These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 1911633)

  • 41. [Expression of vimentin in lens epithelial cells of age-related cataract].
    Zhou J; Hui Y; Li Y
    Zhonghua Yan Ke Za Zhi; 2001 Sep; 37(5):342-5. PubMed ID: 11770401
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A human lens model of cortical cataract: Ca2+-induced protein loss, vimentin cleavage and opacification.
    Sanderson J; Marcantonio JM; Duncan G
    Invest Ophthalmol Vis Sci; 2000 Jul; 41(8):2255-61. PubMed ID: 10892870
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Multi-crystallin complexes exist in the water-soluble high molecular weight protein fractions of aging normal and cataractous human lenses.
    Srivastava K; Chaves JM; Srivastava OP; Kirk M
    Exp Eye Res; 2008 Oct; 87(4):356-66. PubMed ID: 18662688
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Age-related changes in the kinetics of water transport in normal human lenses.
    Moffat BA; Landman KA; Truscott RJ; Sweeney MH; Pope JM
    Exp Eye Res; 1999 Dec; 69(6):663-9. PubMed ID: 10620395
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Relationship between lens protein glycation and membrane structure in human cataract.
    Scalbert P; Birlouez-Aragon I
    Exp Eye Res; 1993 Mar; 56(3):335-40. PubMed ID: 8472788
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Spectroscopic and biochemical correlations during the course of human lens aging.
    Ranjan M; Beedu SR
    BMC Ophthalmol; 2006 Mar; 6():10. PubMed ID: 16519820
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Relationship between spectral transmittance and slit lamp color of human lenses.
    van den Berg TJ; Felius J
    Invest Ophthalmol Vis Sci; 1995 Feb; 36(2):322-9. PubMed ID: 7843903
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nuclear magnetic resonance analyses of the cold cataract: whole lens studies.
    Lerman S; Ashley DL; Long RC; Goldstein JH; Megaw JM; Gardner K
    Invest Ophthalmol Vis Sci; 1982 Aug; 23(2):218-26. PubMed ID: 7096016
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Proton magnetic resonance imaging of the ocular lens.
    Cheng HM; Yeh LI; Barnett P; Miglior S; Eagon JC; González G; Brady TJ
    Exp Eye Res; 1987 Dec; 45(6):875-82. PubMed ID: 3428403
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Studies of the changes in crystalline lens transparency in rabbits with experimental cataract].
    Prost M; Gerkowicz K; Katski W; Gerkowicz M; Jedrzejewski D
    Klin Oczna; 1991 Dec; 93(12):321-4. PubMed ID: 1819665
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Red fluorescence in older and brunescent human lenses.
    Yu NT; Kuck JF; Askren CC
    Invest Ophthalmol Vis Sci; 1979 Dec; 18(12):1278-80. PubMed ID: 511469
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Photographic and spectroscopic correlations of human cataracts.
    Lerman S; Moran M; Matthews N
    Ophthalmic Res; 1989; 21(1):18-26. PubMed ID: 2710494
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Study on the variation of relaxation time in diabetic cataractous lenses of rats by using NMRA].
    Zhang Y; Zhang S; Hu X; Liu Q; Bai F; Zhang M
    Hua Xi Yi Ke Da Xue Xue Bao; 1990 Jun; 21(2):128-30. PubMed ID: 2167872
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A comparative study on the viscoelastic properties of human and animal lenses.
    Sharma PK; Busscher HJ; Terwee T; Koopmans SA; van Kooten TG
    Exp Eye Res; 2011 Nov; 93(5):681-8. PubMed ID: 21910988
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In vivo and in vitro investigations on cataract risk factors.
    Lerman S
    Dev Ophthalmol; 1987; 15():77-81. PubMed ID: 3691927
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Human lens transmission of blue light: a comparison of autofluorescence-based and direct spectral transmission determination.
    Broendsted AE; Hansen MS; Lund-Andersen H; Sander B; Kessel L
    Ophthalmic Res; 2011; 46(3):118-24. PubMed ID: 21325874
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Studies on human lens: I. Origin and development of fluorescent pigments.
    Sen AC; Ueno N; Chakrabarti B
    Photochem Photobiol; 1992 May; 55(5):753-64. PubMed ID: 1528988
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Detection, quantification, and total synthesis of novel 3-hydroxykynurenine glucoside-derived metabolites present in human lenses.
    Gad NA; Mizdrak J; Pattison DI; Davies MJ; Truscott RJ; Jamie JF
    Invest Ophthalmol Vis Sci; 2014 Feb; 55(2):849-55. PubMed ID: 24408982
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Slit lamp observation of fluorescence in normal and cataractous human lens (author's transl)].
    Yajima Y
    Nippon Ganka Gakkai Zasshi; 1979 Aug; 83(8):1252-61. PubMed ID: 525558
    [No Abstract]   [Full Text] [Related]  

  • 60. Radioimmunoassay of epidermal growth factor in human lenses at various stages of development of cataract.
    Tripathi RC; Borisuth NS; Tripathi BJ; Fang VS
    Exp Eye Res; 1991 Dec; 53(6):759-64. PubMed ID: 1783013
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.