These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 1911635)

  • 21. Inter- and intramolecular disulfide bond formation and related structural changes in the lens proteins. A Raman spectroscopic study in vivo of lens aging.
    Ozaki Y; Mizuno A; Itoh K; Iriyama K
    J Biol Chem; 1987 Nov; 262(32):15545-51. PubMed ID: 3680210
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Determination of water content in bovine lenses using near-infrared spectroscopy.
    Zink JM; Koenig JL; Williams TR
    Ophthalmic Res; 1997; 29(6):429-35. PubMed ID: 9380345
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Measurement of very small birefringence of biological tissues].
    Liu XJ; Zhang YZ; Hu XM; Zhang SQ
    Sichuan Yi Xue Yuan Xue Bao; 1985 Jun; 16(2):118-21. PubMed ID: 3837360
    [No Abstract]   [Full Text] [Related]  

  • 24. Comparative 1H-NMR studies on the physical state of water in soft contact lens and mouse lens.
    Kuwata K; Era S; Sogami M; Amano H; Nagaoka S; Kato K; Takahashi K; Kitazawa Y; Watari H
    Biochim Biophys Acta; 1996 Apr; 1289(3):369-76. PubMed ID: 8620021
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vibrational spectroscopy of the phosphate mineral kovdorskite-Mg2PO4(OH)·3H2O.
    Frost RL; López A; Xi Y; Granja A; Scholz R; Lima RM
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Oct; 114():309-15. PubMed ID: 23778171
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lipid composition, membrane structure relationships in lens and muscle sarcoplasmic reticulum membranes.
    Borchman D; Tang D; Yappert MC
    Biospectroscopy; 1999; 5(3):151-67. PubMed ID: 10380082
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Theory of relaxation of mobile water protons induced by protein NH moieties, with application to rat heart muscle and calf lens homogenates.
    Koenig SH
    Biophys J; 1988 Jan; 53(1):91-6. PubMed ID: 2829984
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The microscopic protein structure of the lens with a theory for cataract formation as determined by Raman spectroscopy of intact bovine lenses.
    Schachar RA; Solin SA
    Invest Ophthalmol; 1975 May; 14(5):380-96. PubMed ID: 1126827
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Time-domain calculations of the polarized Raman spectra, the transient infrared absorption anisotropy, and the extent of delocalization of the OH stretching mode of liquid water.
    Torii H
    J Phys Chem A; 2006 Aug; 110(30):9469-77. PubMed ID: 16869698
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Raman study of the lenses of spontaneously-occurring and streptozotocin-induced diabetic rats.
    Toshima S; Miyazaki H; Mizuno A
    Jpn J Ophthalmol; 1990; 34(4):436-41. PubMed ID: 2150537
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Resonance Raman studies on the ligand-iron interactions in hemoproteins and metallo-porphyrins.
    Kitagawa T; Ozaki Y; Kyogoku Y
    Adv Biophys; 1978; 11():153-96. PubMed ID: 27953
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Raman spectroscopic study of the antimonite mineral peretaite Ca(SbO)(4)(OH)(2)(SO(4))(2).2H(2)O.
    Frost RL; Keeffe EC; Bahfenne S
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 May; 75(5):1476-9. PubMed ID: 20226725
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A vibrational spectroscopic study of the phosphate mineral minyulite KAl2(OH,F)(PO4)2⋅4(H2O) and in comparison with wardite.
    Frost RL; López A; Xi Y; Cardoso LH; Scholz R
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Apr; 124():34-9. PubMed ID: 24457936
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Raman and infrared spectroscopic study of boussingaultite and nickelboussingaultite.
    Culka A; Jehlicka J; Nemec I
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Aug; 73(3):420-3. PubMed ID: 19062333
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydration of the calcium(II) ion in an aqueous solution of common anions (ClO4-, Cl-, Br-, and NO3-).
    Rudolph WW; Irmer G
    Dalton Trans; 2013 Mar; 42(11):3919-35. PubMed ID: 23334569
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Raman microspectroscopy of fixed rabbit and human lenses and lens slices: new potentialities.
    Bot AC; Huizinga A; de Mul FF; Vrensen GF; Greve J
    Exp Eye Res; 1989 Aug; 49(2):161-9. PubMed ID: 2767164
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Viscometric studies on the structure of the water-insoluble protein in transparent cattle lens].
    THOMANN H
    Albrecht Von Graefes Arch Ophthalmol; 1962; 165():51-9. PubMed ID: 13920739
    [No Abstract]   [Full Text] [Related]  

  • 38. Raman microscopy of autunite minerals at liquid nitrogen temperature.
    Frost RL; Weier M
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Aug; 60(10):2399-409. PubMed ID: 15249032
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vibrational spectroscopy of the borate mineral henmilite Ca₂Cu[B(OH)₄]₂(OH)₄.
    Frost RL; Xi Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Feb; 103():356-60. PubMed ID: 23261634
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Enzymatic determination of "true glucose" in the crystalline lens. Modification of the glucose concentration in calf and cattle lenses].
    PAULUS W; HOCKWIN O; KLEIFELD O
    Albrecht Von Graefes Arch Ophthalmol; 1961; 163():309-13. PubMed ID: 13733509
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.