These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 19116673)

  • 1. Normalization of voltage-sensitive dye signal with functional activity measures.
    Takagaki K; Lippert MT; Dann B; Wanger T; Ohl FW
    PLoS One; 2008; 3(12):e4041. PubMed ID: 19116673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of fluorescent voltage-sensitive dyes for multisite optical recording in hamster cerebral cortex by measurement of bicuculline-induced epileptiform events.
    deBeer Zeiger J
    Neuroimage; 1997 Feb; 5(2):154-63. PubMed ID: 9345545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Voltage-sensitive dye imaging of population neuronal activity in cortical tissue.
    Jin W; Zhang RJ; Wu JY
    J Neurosci Methods; 2002 Mar; 115(1):13-27. PubMed ID: 11897360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Voltage-sensitive dye imaging reveals dynamic spatiotemporal properties of cortical activity after spontaneous muscle twitches in the newborn rat.
    McVea DA; Mohajerani MH; Murphy TH
    J Neurosci; 2012 Aug; 32(32):10982-94. PubMed ID: 22875932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spread of epileptiform activity in the immature rat neocortex studied with voltage-sensitive dyes and laser scanning microscopy.
    Sutor B; Hablitz JJ; Rucker F; ten Bruggencate G
    J Neurophysiol; 1994 Oct; 72(4):1756-68. PubMed ID: 7823100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical analysis of acute spontaneous epileptiform discharges in the in vivo rat cerebral cortex.
    Miyakawa N; Yazawa I; Sasaki S; Momose-Sato Y; Sato K
    Neuroimage; 2003 Mar; 18(3):622-32. PubMed ID: 12667839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional interactions within the parahippocampal region revealed by voltage-sensitive dye imaging in the isolated guinea pig brain.
    Biella G; Spaiardi P; Toselli M; de Curtis M; Gnatkovsky V
    J Neurophysiol; 2010 Feb; 103(2):725-32. PubMed ID: 19939958
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetically Encoded Protein Sensors of Membrane Potential.
    Storace D; Rad MS; Han Z; Jin L; Cohen LB; Hughes T; Baker BJ; Sung U
    Adv Exp Med Biol; 2015; 859():493-509. PubMed ID: 26238066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hemodynamic surrogates for excitatory membrane potential change during interictal epileptiform events in rat neocortex.
    Ma H; Zhao M; Suh M; Schwartz TH
    J Neurophysiol; 2009 May; 101(5):2550-62. PubMed ID: 19244357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatiotemporal properties of an evoked population activity in rat sensory cortical slices.
    Wu JY; Guan L; Bai L; Yang Q
    J Neurophysiol; 2001 Nov; 86(5):2461-74. PubMed ID: 11698535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional calcium imaging in developing cortical networks.
    Dawitz J; Kroon T; Hjorth JJ; Meredith RM
    J Vis Exp; 2011 Oct; (56):. PubMed ID: 22041662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined voltage and calcium epifluorescence imaging in vitro and in vivo reveals subthreshold and suprathreshold dynamics of mouse barrel cortex.
    Berger T; Borgdorff A; Crochet S; Neubauer FB; Lefort S; Fauvet B; Ferezou I; Carleton A; Lüscher HR; Petersen CC
    J Neurophysiol; 2007 May; 97(5):3751-62. PubMed ID: 17360827
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatiotemporal dynamics of sensory responses in layer 2/3 of rat barrel cortex measured in vivo by voltage-sensitive dye imaging combined with whole-cell voltage recordings and neuron reconstructions.
    Petersen CC; Grinvald A; Sakmann B
    J Neurosci; 2003 Feb; 23(4):1298-309. PubMed ID: 12598618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional study of the rat cortical microcircuitry with voltage-sensitive dye imaging of neocortical slices.
    Yuste R; Tank DW; Kleinfeld D
    Cereb Cortex; 1997 Sep; 7(6):546-58. PubMed ID: 9276179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of the cortical representation of whisker directional deflection using voltage-sensitive dye optical imaging.
    Tsytsarev V; Pope D; Pumbo E; Yablonskii A; Hofmann M
    Neuroimage; 2010 Oct; 53(1):233-8. PubMed ID: 20558304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of optical signals with electrophysiological signals in neural activities of Di-4-ANEPPS stained rat hippocampal slices.
    Tominaga T; Tominaga Y; Yamada H; Matsumoto G; Ichikawa M
    J Neurosci Methods; 2000 Oct; 102(1):11-23. PubMed ID: 11000407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interpretation and optimization of absorbance and fluorescence signals from voltage-sensitive dyes.
    Chang PY; Jackson MB
    J Membr Biol; 2003 Nov; 196(2):105-16. PubMed ID: 14724747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unique properties of cardiac action potentials recorded with voltage-sensitive dyes.
    Girouard SD; Laurita KR; Rosenbaum DS
    J Cardiovasc Electrophysiol; 1996 Nov; 7(11):1024-38. PubMed ID: 8930734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imaging the Dynamics of Neocortical Population Activity in Behaving and Freely Moving Mammals.
    Grinvald A; Petersen CC
    Adv Exp Med Biol; 2015; 859():273-96. PubMed ID: 26238057
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.