BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 19117145)

  • 1. Binding affinity and kinetic analysis of nuclear receptor/co-regulator interactions using surface plasmon resonance.
    Lavery DN
    Methods Mol Biol; 2009; 505():171-86. PubMed ID: 19117145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic studies of RNA-protein interactions using surface plasmon resonance.
    Katsamba PS; Park S; Laird-Offringa IA
    Methods; 2002 Feb; 26(2):95-104. PubMed ID: 12054886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface plasmon resonance imaging analysis of protein-protein interactions using on-chip-expressed capture protein.
    Kim M; Park K; Jeong EJ; Shin YB; Chung BH
    Anal Biochem; 2006 Apr; 351(2):298-304. PubMed ID: 16510110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface plasmon resonance for probing quadruplex folding and interactions with proteins and small molecules.
    Redman JE
    Methods; 2007 Dec; 43(4):302-12. PubMed ID: 17967700
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of two- and three-dimensional streptavidin binding platforms for surface plasmon resonance spectroscopy studies of DNA hybridization and protein-DNA binding.
    Yang N; Su X; Tjong V; Knoll W
    Biosens Bioelectron; 2007 May; 22(11):2700-6. PubMed ID: 17223028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analyte-receptor binding on surface plasmon resonance biosensors: a fractal analysis of Cre-loxP interactions and the influence of Cl, O, and S on drug-liposome interactions.
    Butala HD; Tan Y; Sadana A
    Anal Biochem; 2004 Sep; 332(1):10-22. PubMed ID: 15301944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthetic peptide vaccine development: measurement of polyclonal antibody affinity and cross-reactivity using a new peptide capture and release system for surface plasmon resonance spectroscopy.
    Cachia PJ; Kao DJ; Hodges RS
    J Mol Recognit; 2004; 17(6):540-57. PubMed ID: 15386623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of protein--DNA interactions using surface plasmon resonance spectroscopy with various assay schemes.
    Teh HF; Peh WY; Su X; Thomsen JS
    Biochemistry; 2007 Feb; 46(8):2127-35. PubMed ID: 17266332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High throughput analysis of nuclear receptor-cofactor interactions.
    Goodson ML; Farboud B; Privalsky ML
    Methods Mol Biol; 2009; 505():157-69. PubMed ID: 19117144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual polarization interferometry characterization of carbohydrate-protein interactions.
    Ricard-Blum S; Peel LL; Ruggiero F; Freeman NJ
    Anal Biochem; 2006 May; 352(2):252-9. PubMed ID: 16545768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of Ca2+ and phosphocholine interactions with C-reactive protein using a surface plasmon resonance biosensor.
    Christopeit T; Gossas T; Danielson UH
    Anal Biochem; 2009 Aug; 391(1):39-44. PubMed ID: 19435596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface plasmon resonance in protein-membrane interactions.
    Besenicar M; Macek P; Lakey JH; Anderluh G
    Chem Phys Lipids; 2006 Jun; 141(1-2):169-78. PubMed ID: 16584720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of the molecular interaction of glycosylated proteins with rabbit liver asialoglycoprotein receptors using surface plasmon resonance spectroscopy.
    Terada T; Nishikawa M; Yamashita F; Hashida M
    J Pharm Biomed Anal; 2006 Jun; 41(3):966-72. PubMed ID: 16546339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrated electrokinetic sample focusing and surface plasmon resonance imaging system for measuring biomolecular interactions.
    Krishnamoorthy G; Carlen ET; Kohlheyer D; Schasfoort RB; van den Berg A
    Anal Chem; 2009 Mar; 81(5):1957-63. PubMed ID: 19186980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid analysis of protein interactions: On-chip micropurification of recombinant protein expressed in Esherichia coli.
    Natsume T; Taoka M; Manki H; Kume S; Isobe T; Mikoshiba K
    Proteomics; 2002 Sep; 2(9):1247-53. PubMed ID: 12362342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imaging technique for the screening of protein-protein interactions using scattered light under surface plasmon resonance conditions.
    Savchenko A; Kashuba E; Kashuba V; Snopok B
    Anal Chem; 2007 Feb; 79(4):1349-55. PubMed ID: 17297933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomolecular interactions by Surface Plasmon Resonance technology.
    Torreri P; Ceccarini M; Macioce P; Petrucci TC
    Ann Ist Super Sanita; 2005; 41(4):437-41. PubMed ID: 16569911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immobilization and clustering of structurally defined oligosaccharides for sugar chips: an improved method for surface plasmon resonance analysis of protein-carbohydrate interactions.
    Suda Y; Arano A; Fukui Y; Koshida S; Wakao M; Nishimura T; Kusumoto S; Sobel M
    Bioconjug Chem; 2006; 17(5):1125-35. PubMed ID: 16984119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time competitive kinetic analysis of interactions between low-molecular-weight ligands in solution and surface-immobilized receptors.
    Karlsson R
    Anal Biochem; 1994 Aug; 221(1):142-51. PubMed ID: 7985785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface plasmon resonance study of g protein/receptor coupling in a lipid bilayer-free system.
    Komolov KE; Senin II; Philippov PP; Koch KW
    Anal Chem; 2006 Feb; 78(4):1228-34. PubMed ID: 16478116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.