BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 19117394)

  • 21. Adaptation of human tumor cells to tirapazamine under aerobic conditions: implications of increased antioxidant enzyme activity to mechanism of aerobic cytotoxicity.
    Elwell JH; Siim BG; Evans JW; Brown JM
    Biochem Pharmacol; 1997 Jul; 54(2):249-57. PubMed ID: 9271329
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of radicals formed following enzymatic reduction of 3-substituted analogues of the hypoxia-selective cytotoxin 3-amino-1,2,4-benzotriazine 1,4-dioxide (tirapazamine).
    Shinde SS; Maroz A; Hay MP; Patterson AV; Denny WA; Anderson RF
    J Am Chem Soc; 2010 Mar; 132(8):2591-9. PubMed ID: 20141134
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A mass spectrometry study of tirapazamine and its metabolites. insights into the mechanism of metabolic transformations and the characterization of reaction intermediates.
    Zagorevskii D; Song M; Breneman C; Yuan Y; Fuchs T; Gates KS; Greenlief CM
    J Am Soc Mass Spectrom; 2003 Aug; 14(8):881-92. PubMed ID: 12892912
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On the reaction mechanism of tirapazamine reduction chemistry: unimolecular N-OH homolysis, stepwise dehydration, or triazene ring-opening.
    Yin J; Glaser R; Gates KS
    Chem Res Toxicol; 2012 Mar; 25(3):634-45. PubMed ID: 22390168
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Selective potentiation of the hypoxic cytotoxicity of tirapazamine by its 1-N-oxide metabolite SR 4317.
    Siim BG; Pruijn FB; Sturman JR; Hogg A; Hay MP; Brown JM; Wilson WR
    Cancer Res; 2004 Jan; 64(2):736-42. PubMed ID: 14744792
    [TBL] [Abstract][Full Text] [Related]  

  • 26. DNA damage measured by the comet assay in head and neck cancer patients treated with tirapazamine.
    Dorie MJ; Kovacs MS; Gabalski EC; Adam M; Le QT; Bloch DA; Pinto HA; Terris DJ; Brown JM
    Neoplasia; 1999 Nov; 1(5):461-7. PubMed ID: 10933062
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DNA-targeted 1,2,4-benzotriazine 1,4-dioxides: potent analogues of the hypoxia-selective cytotoxin tirapazamine.
    Hay MP; Pruijn FB; Gamage SA; Liyanage HD; Kovacs MS; Patterson AV; Wilson WR; Brown JM; Denny WA
    J Med Chem; 2004 Jan; 47(2):475-88. PubMed ID: 14711317
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure-activity relationships of 1,2,4-benzotriazine 1,4-dioxides as hypoxia-selective analogues of tirapazamine.
    Hay MP; Gamage SA; Kovacs MS; Pruijn FB; Anderson RF; Patterson AV; Wilson WR; Brown JM; Denny WA
    J Med Chem; 2003 Jan; 46(1):169-82. PubMed ID: 12502371
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oxidative DNA base damage by the antitumor agent 3-amino-1,2,4-benzotriazine 1,4-dioxide (tirapazamine).
    Kotandeniya D; Ganley B; Gates KS
    Bioorg Med Chem Lett; 2002 Sep; 12(17):2325-9. PubMed ID: 12161126
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of [
    Elsaidi H; Ahmadi F; Wiebe LI; Kumar P
    Pharmaceuticals (Basel); 2019 Jan; 12(1):. PubMed ID: 30609671
    [No Abstract]   [Full Text] [Related]  

  • 31. The one-electron reduction potential of 3-amino-1,2,4-benzotriazine 1,4-dioxide (tirapazamine): a hypoxia-selective bioreductive drug.
    Priyadarsini KI; Tracy M; Wardman P
    Free Radic Res; 1996 Nov; 25(5):393-9. PubMed ID: 8902537
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Subcellular Location of Tirapazamine Reduction Dramatically Affects Aerobic but Not Anoxic Cytotoxicity.
    Guise CP; Abbattista MR; Anderson RF; Li D; Taghipouran R; Tsai A; Lee SJ; Smaill JB; Denny WA; Hay MP; Wilson WR; Hicks KO; Patterson AV
    Molecules; 2020 Oct; 25(21):. PubMed ID: 33105798
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis and biological activity of 1-methyl-tryptophan-tirapazamine hybrids as hypoxia-targeting indoleamine 2,3-dioxygenase inhibitors.
    Nakashima H; Uto Y; Nakata E; Nagasawa H; Ikkyu K; Hiraoka N; Nakashima K; Sasaki Y; Sugimoto H; Shiro Y; Hashimoto T; Okamoto Y; Asakawa Y; Hori H
    Bioorg Med Chem; 2008 Sep; 16(18):8661-9. PubMed ID: 18715787
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DNA strand cleavage by the phenazine di-N-oxide natural product myxin under both aerobic and anaerobic conditions.
    Chowdhury G; Sarkar U; Pullen S; Wilson WR; Rajapakse A; Fuchs-Knotts T; Gates KS
    Chem Res Toxicol; 2012 Jan; 25(1):197-206. PubMed ID: 22084973
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Direct evidence for bimodal DNA damage induced by tirapazamine.
    Daniels JS; Gates KS; Tronche C; Greenberg MM
    Chem Res Toxicol; 1998 Nov; 11(11):1254-7. PubMed ID: 9815184
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improved potency of the hypoxic cytotoxin tirapazamine by DNA-targeting.
    Delahoussaye YM; Hay MP; Pruijn FB; Denny WA; Brown JM
    Biochem Pharmacol; 2003 Jun; 65(11):1807-15. PubMed ID: 12781332
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electron and spin-density analysis of tirapazamine reduction chemistry.
    Yin J; Glaser R; Gates KS
    Chem Res Toxicol; 2012 Mar; 25(3):620-33. PubMed ID: 22390194
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Selective interaction of tirapazamine with DNA bases and DNA. A comparison of cyclic voltammetry and electrolysis techniques.
    Tocher JH
    Free Radic Res; 2001 Aug; 35(2):159-66. PubMed ID: 11697196
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular mechanisms for the hypoxia-dependent activation of 3-amino-1,2,4-benzotriazine-1,4-dioxide (SR 4233).
    Laderoute K; Wardman P; Rauth AM
    Biochem Pharmacol; 1988 Apr; 37(8):1487-95. PubMed ID: 3128984
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tirapazamine is metabolized to its DNA-damaging radical by intranuclear enzymes.
    Evans JW; Yudoh K; Delahoussaye YM; Brown JM
    Cancer Res; 1998 May; 58(10):2098-101. PubMed ID: 9605751
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.