BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

401 related articles for article (PubMed ID: 19117444)

  • 1. Hydrophoretic sorting of micrometer and submicrometer particles using anisotropic microfluidic obstacles.
    Choi S; Song S; Choi C; Park JK
    Anal Chem; 2009 Jan; 81(1):50-5. PubMed ID: 19117444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sheathless hydrophoretic particle focusing in a microchannel with exponentially increasing obstacle arrays.
    Choi S; Park JK
    Anal Chem; 2008 Apr; 80(8):3035-9. PubMed ID: 18355090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous hydrophoretic separation and sizing of microparticles using slanted obstacles in a microchannel.
    Choi S; Park JK
    Lab Chip; 2007 Jul; 7(7):890-7. PubMed ID: 17594009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous flow separation of particles within an asymmetric microfluidic device.
    Zhang X; Cooper JM; Monaghan PB; Haswell SJ
    Lab Chip; 2006 Apr; 6(4):561-6. PubMed ID: 16572220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of unlabeled particles in the low micrometer size range using light scattering and hydrodynamic 3D focusing in a microfluidic system.
    Zhuang G; Jensen TG; Kutter JP
    Electrophoresis; 2012 Jul; 33(12):1715-22. PubMed ID: 22740459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous blood cell separation by hydrophoretic filtration.
    Choi S; Song S; Choi C; Park JK
    Lab Chip; 2007 Nov; 7(11):1532-8. PubMed ID: 17960282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous separation of particles using a microfluidic device equipped with flow rate control valves.
    Sai Y; Yamada M; Yasuda M; Seki M
    J Chromatogr A; 2006 Sep; 1127(1-2):214-20. PubMed ID: 16890945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuneable hydrophoretic separation using elastic deformation of poly(dimethylsiloxane).
    Choi S; Park JK
    Lab Chip; 2009 Jul; 9(13):1962-5. PubMed ID: 19532973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous sorting and separation of microparticles by size using AC dielectrophoresis in a PDMS microfluidic device with 3-D conducting PDMS composite electrodes.
    Lewpiriyawong N; Yang C; Lam YC
    Electrophoresis; 2010 Aug; 31(15):2622-31. PubMed ID: 20665920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Particle separation by a moving air-liquid interface in a microchannel.
    Wang F; Chon CH; Li D
    J Colloid Interface Sci; 2010 Dec; 352(2):580-4. PubMed ID: 20851407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perfusion in microfluidic cross-flow: separation of white blood cells from whole blood and exchange of medium in a continuous flow.
    VanDelinder V; Groisman A
    Anal Chem; 2007 Mar; 79(5):2023-30. PubMed ID: 17249639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shaping nano-/micro-particles for enhanced vascular interaction in laminar flows.
    Lee SY; Ferrari M; Decuzzi P
    Nanotechnology; 2009 Dec; 20(49):495101. PubMed ID: 19904027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous focusing of microparticles using inertial lift force and vorticity via multi-orifice microfluidic channels.
    Park JS; Song SH; Jung HI
    Lab Chip; 2009 Apr; 9(7):939-48. PubMed ID: 19294305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On-chip free-flow magnetophoresis: continuous flow separation of magnetic particles and agglomerates.
    Pamme N; Manz A
    Anal Chem; 2004 Dec; 76(24):7250-6. PubMed ID: 15595866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects.
    Jellema LC; Mey T; Koster S; Verpoorte E
    Lab Chip; 2009 Jul; 9(13):1914-25. PubMed ID: 19532967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlled rotation of biological micro- and nano-particles in microvortices.
    Shelby JP; Chiu DT
    Lab Chip; 2004 Jun; 4(3):168-70. PubMed ID: 15159772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-throughput and high-resolution flow cytometry in molded microfluidic devices.
    Simonnet C; Groisman A
    Anal Chem; 2006 Aug; 78(16):5653-63. PubMed ID: 16906708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous and size-dependent sorting of emulsion droplets using hydrodynamics in pinched microchannels.
    Maenaka H; Yamada M; Yasuda M; Seki M
    Langmuir; 2008 Apr; 24(8):4405-10. PubMed ID: 18327961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tuneable separation in elastomeric microfluidics devices.
    Beech JP; Tegenfeldt JO
    Lab Chip; 2008 May; 8(5):657-9. PubMed ID: 18432332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous and precise particle separation by electroosmotic flow control in microfluidic devices.
    Kawamata T; Yamada M; Yasuda M; Seki M
    Electrophoresis; 2008 Apr; 29(7):1423-30. PubMed ID: 18384021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.