BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

754 related articles for article (PubMed ID: 19117466)

  • 1. Carbon nanotube-ionic liquid composite sensors and biosensors.
    Kachoosangi RT; Musameh MM; Abu-Yousef I; Yousef JM; Kanan SM; Xiao L; Davies SG; Russell A; Compton RG
    Anal Chem; 2009 Jan; 81(1):435-42. PubMed ID: 19117466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucose biosensor prepared by glucose oxidase encapsulated sol-gel and carbon-nanotube-modified basal plane pyrolytic graphite electrode.
    Salimi A; Compton RG; Hallaj R
    Anal Biochem; 2004 Oct; 333(1):49-56. PubMed ID: 15351279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ionic liquid-carbon composite glucose biosensor.
    Musameh MM; Kachoosangi RT; Xiao L; Russell A; Compton RG
    Biosens Bioelectron; 2008 Sep; 24(1):87-92. PubMed ID: 18457943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noncovalent attachment of NAD+ cofactor onto carbon nanotubes for preparation of integrated dehydrogenase-based electrochemical biosensors.
    Zhou H; Zhang Z; Yu P; Su L; Ohsaka T; Mao L
    Langmuir; 2010 Apr; 26(8):6028-32. PubMed ID: 20121055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide.
    Zhou M; Zhai Y; Dong S
    Anal Chem; 2009 Jul; 81(14):5603-13. PubMed ID: 19522529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly ordered mesoporous carbons as electrode material for the construction of electrochemical dehydrogenase- and oxidase-based biosensors.
    Zhou M; Shang L; Li B; Huang L; Dong S
    Biosens Bioelectron; 2008 Nov; 24(3):442-7. PubMed ID: 18541421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrocatalytic oxidation of NADH at electrogenerated NAD+ oxidation product immobilized onto multiwalled carbon nanotubes/ionic liquid nanocomposite: application to ethanol biosensing.
    Teymourian H; Salimi A; Hallaj R
    Talanta; 2012 Feb; 90():91-8. PubMed ID: 22340121
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing the electrochemical response of myoglobin with carbon nanotube electrodes.
    Esplandiu MJ; Pacios M; Cyganek L; Bartroli J; del Valle M
    Nanotechnology; 2009 Sep; 20(35):355502. PubMed ID: 19671979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon nanotube/teflon composite electrochemical sensors and biosensors.
    Wang J; Musameh M
    Anal Chem; 2003 May; 75(9):2075-9. PubMed ID: 12720343
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel glucose biosensor based on immobilization of glucose oxidase into multiwall carbon nanotubes-polyelectrolyte-loaded electrospun nanofibrous membrane.
    Manesh KM; Kim HT; Santhosh P; Gopalan AI; Lee KP
    Biosens Bioelectron; 2008 Jan; 23(6):771-9. PubMed ID: 17905578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of ascorbic acid levels in food samples by using an ionic liquid-carbon nanotube composite electrode.
    Ping J; Wang Y; Wu J; Ying Y; Ji F
    Food Chem; 2012 Nov; 135(2):362-7. PubMed ID: 22868100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzyme-modified nanoporous gold-based electrochemical biosensors.
    Qiu H; Xue L; Ji G; Zhou G; Huang X; Qu Y; Gao P
    Biosens Bioelectron; 2009 Jun; 24(10):3014-8. PubMed ID: 19345571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amperometric glucose biosensor based on boron-doped carbon nanotubes modified electrode.
    Chen X; Chen J; Deng C; Xiao C; Yang Y; Nie Z; Yao S
    Talanta; 2008 Aug; 76(4):763-7. PubMed ID: 18656655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-performance carbon composite electrode based on an ionic liquid as a binder.
    Maleki N; Safavi A; Tajabadi F
    Anal Chem; 2006 Jun; 78(11):3820-6. PubMed ID: 16737243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel nonenzymatic hydrogen peroxide sensor based on multi-wall carbon nanotube/silver nanoparticle nanohybrids modified gold electrode.
    Zhao W; Wang H; Qin X; Wang X; Zhao Z; Miao Z; Chen L; Shan M; Fang Y; Chen Q
    Talanta; 2009 Dec; 80(2):1029-33. PubMed ID: 19836592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors.
    Wang J; Musameh M; Lin Y
    J Am Chem Soc; 2003 Mar; 125(9):2408-9. PubMed ID: 12603125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A selective and sensitive D-xylose electrochemical biosensor based on xylose dehydrogenase displayed on the surface of bacteria and multi-walled carbon nanotubes modified electrode.
    Li L; Liang B; Shi J; Li F; Mascini M; Liu A
    Biosens Bioelectron; 2012 Mar; 33(1):100-5. PubMed ID: 22251747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The advantage of using carbon nanotubes compared with edge plane pyrolytic graphite as an electrode material for oxidase-based biosensors.
    Kurusu F; Tsunoda H; Saito A; Tomita A; Kadota A; Kayahara N; Karube I; Gotoh M
    Analyst; 2006 Dec; 131(12):1292-8. PubMed ID: 17124536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrogen-doped carbon nanotubes: high electrocatalytic activity toward the oxidation of hydrogen peroxide and its application for biosensing.
    Xu X; Jiang S; Hu Z; Liu S
    ACS Nano; 2010 Jul; 4(7):4292-8. PubMed ID: 20565121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peptide nanotube-modified electrodes for enzyme-biosensor applications.
    Yemini M; Reches M; Gazit E; Rishpon J
    Anal Chem; 2005 Aug; 77(16):5155-9. PubMed ID: 16097753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.