These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 1911758)

  • 21. Synthesis of 5-thiomannose-containing oligomannoside mimics: binding abilities to concanavalin A.
    Yuasa H; Matsuura S; Hashimoto H
    Bioorg Med Chem Lett; 1998 Jun; 8(11):1297-300. PubMed ID: 9871753
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A structure of the complex between concanavalin A and methyl-3,6-di-O-(alpha-D-mannopyranosyl)-alpha-D-mannopyranoside reveals two binding modes.
    Loris R; Maes D; Poortmans F; Wyns L; Bouckaert J
    J Biol Chem; 1996 Nov; 271(48):30614-8. PubMed ID: 8940035
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Binding of 8-anilinonaphthalene sulfonate to dimeric and tetrameric concanavalin A: energetics and its implications on saccharide binding studied by isothermal titration calorimetry and spectroscopy.
    Banerjee T; Kishore N
    J Phys Chem B; 2006 Apr; 110(13):7022-8. PubMed ID: 16571017
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Binding of 13 C-enriched -methyl-D-glucopyranoside to concanavalin A as studied by carbon magnetic resonance.
    Brewer CF; Sternlicht H; Marcus DM; Grollman AP
    Proc Natl Acad Sci U S A; 1973 Apr; 70(4):1007-11. PubMed ID: 4515601
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Salmonella enterica ZinT structure, zinc affinity and interaction with the high-affinity uptake protein ZnuA provide insight into the management of periplasmic zinc.
    Ilari A; Alaleona F; Tria G; Petrarca P; Battistoni A; Zamparelli C; Verzili D; Falconi M; Chiancone E
    Biochim Biophys Acta; 2014 Jan; 1840(1):535-44. PubMed ID: 24128931
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Location of the saccharide binding site of concanavalin A.
    Becker JW; Reeke GN; Edelman GM
    J Biol Chem; 1971 Oct; 246(19):6123-5. PubMed ID: 5116666
    [No Abstract]   [Full Text] [Related]  

  • 27. Study of the structure of the transition metal-binding site of concanavalin A by extended x-ray absorption fine-structure spectroscopy.
    Kalb AJ; Stern EA; Heald SM
    J Mol Biol; 1979 Dec; 135(2):501-6. PubMed ID: 537085
    [No Abstract]   [Full Text] [Related]  

  • 28. Structure of binary and ternary complexes of zinc and cobalt carboxypeptidase A as determined by X-ray absorption fine structure.
    Zhang K; Auld DS
    Biochemistry; 1995 Dec; 34(50):16306-12. PubMed ID: 8845355
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Crystal structures of the cadmium- and mercury-substituted metallo-beta-lactamase from Bacteroides fragilis.
    Concha NO; Rasmussen BA; Bush K; Herzberg O
    Protein Sci; 1997 Dec; 6(12):2671-6. PubMed ID: 9416622
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural changes of active site cleft and different saccharide binding modes in human lysozyme co-crystallized with hexa-N-acetyl-chitohexaose at pH 4.0.
    Song H; Inaka K; Maenaka K; Matsushima M
    J Mol Biol; 1994 Dec; 244(5):522-40. PubMed ID: 7990138
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Crystallization of Transition-Metal Oxides in Aqueous Solution beyond Ostwald Ripening.
    Jeong ES; Hwang IH; Han SW
    Langmuir; 2020 Sep; 36(35):10565-10576. PubMed ID: 32787022
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Concanavalin A distorts the beta-GlcNAc-(1-->2)-Man linkage of beta-GlcNAc-(1-->2)-alpha-Man-(1-->3)-[beta-GlcNAc-(1-->2)-alpha-Man- (1-->6)]-Man upon binding.
    Moothoo DN; Naismith JH
    Glycobiology; 1998 Feb; 8(2):173-81. PubMed ID: 9451027
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Luminescent saccharide biosensor by using lanthanide-bound lectin labeled with fluorescein.
    Koshi Y; Nakata E; Hamachi I
    Chembiochem; 2005 Aug; 6(8):1349-52. PubMed ID: 16052613
    [No Abstract]   [Full Text] [Related]  

  • 34. Displacement of iron by zinc at the diiron site of Desulfovibrio vulgaris rubrerythrin: X-ray crystal structure and anomalous scattering analysis.
    Jin S; Kurtz DM; Liu ZJ; Rose J; Wang BC
    J Inorg Biochem; 2004 May; 98(5):786-96. PubMed ID: 15134924
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of metal ions in substrate recognition and stability of concanavalin A: a molecular dynamics study.
    Kaushik S; Mohanty D; Surolia A
    Biophys J; 2009 Jan; 96(1):21-34. PubMed ID: 18849415
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Calorimetric analysis of the binding of lectins with overlapping carbohydrate-binding ligand specificities.
    Chervenak MC; Toone EJ
    Biochemistry; 1995 Apr; 34(16):5685-95. PubMed ID: 7727428
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular modeling and NMR studies of benzyl substituted mannosyl trisaccharide binding to two mannose-specific lectins: Allium sativam agglutinin I and Concanavalin A.
    Mazumder P; Mukhopadhyay C
    Biopolymers; 2010 Nov; 93(11):952-67. PubMed ID: 20564057
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure of the concanavalin A-methyl alpha-D-mannopyranoside complex at 6-A resolution.
    Hardman KD; Ainsworth CF
    Biochemistry; 1976 Mar; 15(5):1120-8. PubMed ID: 1252431
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The covalent and three-dimensional structure of concanavalin A.
    Edelman GM; Cunningham BA; Reeke GN; Becker JW; Waxdal MJ; Wang JL
    Proc Natl Acad Sci U S A; 1972 Sep; 69(9):2580-4. PubMed ID: 4506778
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Solid phase synthesis of oligomannopeptoids that mimic the concanavalin A-binding trimannoside.
    Yuasa H; Kamata Y; Kurono S; Hashimoto H
    Bioorg Med Chem Lett; 1998 Aug; 8(16):2139-44. PubMed ID: 9873501
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.