BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 19117830)

  • 1. Foxp3 processing by proprotein convertases and control of regulatory T cell function.
    de Zoeten EF; Lee I; Wang L; Chen C; Ge G; Wells AD; Hancock WW; Ozkaynak E
    J Biol Chem; 2009 Feb; 284(9):5709-16. PubMed ID: 19117830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. C-terminal cleavage of human Foxp3 at a proprotein convertase motif abrogates its suppressive function.
    Elhage R; Cheraï M; Levacher B; Darrasse-Jeze G; Baillou C; Zhao X; Khatib AM; Piaggio E; Klatzmann D
    Scand J Immunol; 2015 Apr; 81(4):229-39. PubMed ID: 25683871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Malignant Tregs express low molecular splice forms of FOXP3 in Sézary syndrome.
    Krejsgaard T; Gjerdrum LM; Ralfkiaer E; Lauenborg B; Eriksen KW; Mathiesen AM; Bovin LF; Gniadecki R; Geisler C; Ryder LP; Zhang Q; Wasik MA; Odum N; Woetmann A
    Leukemia; 2008 Dec; 22(12):2230-9. PubMed ID: 18769452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two lysines in the forkhead domain of foxp3 are key to T regulatory cell function.
    Liu Y; Wang L; Han R; Beier UH; Hancock WW
    PLoS One; 2012; 7(1):e29035. PubMed ID: 22247766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stimulation of α7 nicotinic acetylcholine receptor by nicotine increases suppressive capacity of naturally occurring CD4+CD25+ regulatory T cells in mice in vitro.
    Wang DW; Zhou RB; Yao YM; Zhu XM; Yin YM; Zhao GJ; Dong N; Sheng ZY
    J Pharmacol Exp Ther; 2010 Dec; 335(3):553-61. PubMed ID: 20843956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Natural killer cells prevent CD28-mediated Foxp3 transcription in CD4+CD25- T lymphocytes.
    Brillard E; Pallandre JR; Chalmers D; Ryffel B; Radlovic A; Seilles E; Rohrlich PS; Pivot X; Tiberghien P; Saas P; Borg C
    Exp Hematol; 2007 Mar; 35(3):416-25. PubMed ID: 17309822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acquisition of suppressive function by activated human CD4+ CD25- T cells is associated with the expression of CTLA-4 not FoxP3.
    Zheng Y; Manzotti CN; Burke F; Dussably L; Qureshi O; Walker LS; Sansom DM
    J Immunol; 2008 Aug; 181(3):1683-91. PubMed ID: 18641304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Docosahexaenoic acid reduces suppressive and migratory functions of CD4+CD25+ regulatory T-cells.
    Yessoufou A; Plé A; Moutairou K; Hichami A; Khan NA
    J Lipid Res; 2009 Dec; 50(12):2377-88. PubMed ID: 19561360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low expressions of PD-L1 and CTLA-4 by induced CD4
    Zhao L; Zhou X; Zhou X; Wang H; Gu L; Ke Y; Zhang M; Ji X; Yang X
    Cytokine; 2020 Sep; 133():155119. PubMed ID: 32535334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IDO expressing fibroblasts promote the expansion of antigen specific regulatory T cells.
    Curran TA; Jalili RB; Farrokhi A; Ghahary A
    Immunobiology; 2014 Jan; 219(1):17-24. PubMed ID: 23891282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation and function of immunosuppressive human and murine CD8+ T cells by transforming growth factor-β and retinoic acid.
    Fleissner D; Frede A; Knott M; Knuschke T; Geffers R; Hansen W; Dobos G; Langhorst J; Buer J; Westendorf AM
    Immunology; 2011 Sep; 134(1):82-92. PubMed ID: 21711349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Foxp3(+) T cells expressing RORγt represent a stable regulatory T-cell effector lineage with enhanced suppressive capacity during intestinal inflammation.
    Yang BH; Hagemann S; Mamareli P; Lauer U; Hoffmann U; Beckstette M; Föhse L; Prinz I; Pezoldt J; Suerbaum S; Sparwasser T; Hamann A; Floess S; Huehn J; Lochner M
    Mucosal Immunol; 2016 Mar; 9(2):444-57. PubMed ID: 26307665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. IL-2 contributes to maintaining a balance between CD4+Foxp3+ regulatory T cells and effector CD4+ T cells required for immune control of blood-stage malaria infection.
    Berretta F; St-Pierre J; Piccirillo CA; Stevenson MM
    J Immunol; 2011 Apr; 186(8):4862-71. PubMed ID: 21389253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human CD19(+)CD25(high) B regulatory cells suppress proliferation of CD4(+) T cells and enhance Foxp3 and CTLA-4 expression in T-regulatory cells.
    Kessel A; Haj T; Peri R; Snir A; Melamed D; Sabo E; Toubi E
    Autoimmun Rev; 2012 Jul; 11(9):670-7. PubMed ID: 22155204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subpopulations of equine blood lymphocytes expressing regulatory T cell markers.
    Robbin MG; Wagner B; Noronha LE; Antczak DF; de Mestre AM
    Vet Immunol Immunopathol; 2011 Mar; 140(1-2):90-101. PubMed ID: 21208665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Proliferation of CD4+ CD25+ regulatory T cells of rat by different cytokines in vitro].
    Wang ZH; Zhu JY; Li T; Leng XS
    Zhonghua Yi Xue Za Zhi; 2008 Mar; 88(12):844-7. PubMed ID: 18756991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CTLA-4 is required by CD4+CD25+ Treg to control CD4+ T-cell lymphopenia-induced proliferation.
    Sojka DK; Hughson A; Fowell DJ
    Eur J Immunol; 2009 Jun; 39(6):1544-51. PubMed ID: 19462377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. B7+ iris pigment epithelial cells convert T cells into CTLA-4+, B7-expressing CD8+ regulatory T cells.
    Sugita S; Keino H; Futagami Y; Takase H; Mochizuki M; Stein-Streilein J; Streilein JW
    Invest Ophthalmol Vis Sci; 2006 Dec; 47(12):5376-84. PubMed ID: 17122127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CD4+CD25+Foxp3+ regulatory T cells are dispensable for controlling CD8+ T cell-mediated lung inflammation.
    Tosiek MJ; Gruber AD; Bader SR; Mauel S; Hoymann HG; Prettin S; Tschernig T; Buer J; Gereke M; Bruder D
    J Immunol; 2011 Jun; 186(11):6106-18. PubMed ID: 21518973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. IL-1R1 is expressed on both Helios(+) and Helios(-) FoxP3(+) CD4(+) T cells in the rheumatic joint.
    Müller M; Herrath J; Malmström V
    Clin Exp Immunol; 2015 Oct; 182(1):90-100. PubMed ID: 26076982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.