BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 19118106)

  • 1. Modularity of endpoint force patterns evoked using intraspinal microstimulation in treadmill trained and/or neurotrophin-treated chronic spinal cats.
    Boyce VS; Lemay MA
    J Neurophysiol; 2009 Mar; 101(3):1309-20. PubMed ID: 19118106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modularity of motor output evoked by intraspinal microstimulation in cats.
    Lemay MA; Grill WM
    J Neurophysiol; 2004 Jan; 91(1):502-14. PubMed ID: 14523079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Either brain-derived neurotrophic factor or neurotrophin-3 only neurotrophin-producing grafts promote locomotor recovery in untrained spinalized cats.
    Ollivier-Lanvin K; Fischer I; Tom V; Houlé JD; Lemay MA
    Neurorehabil Neural Repair; 2015 Jan; 29(1):90-100. PubMed ID: 24803493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neurotrophic factors promote and enhance locomotor recovery in untrained spinalized cats.
    Boyce VS; Tumolo M; Fischer I; Murray M; Lemay MA
    J Neurophysiol; 2007 Oct; 98(4):1988-96. PubMed ID: 17652412
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Locomotor and reflex adaptation after partial denervation of ankle extensors in chronic spinal cats.
    Frigon A; Rossignol S
    J Neurophysiol; 2008 Sep; 100(3):1513-22. PubMed ID: 18614755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transplants of Neurotrophin-Producing Autologous Fibroblasts Promote Recovery of Treadmill Stepping in the Acute, Sub-Chronic, and Chronic Spinal Cat.
    Krupka AJ; Fischer I; Lemay MA
    J Neurotrauma; 2017 May; 34(10):1858-1872. PubMed ID: 27829315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptation to slope in locomotor-trained spinal cats with intact and self-reinnervated lateral gastrocnemius and soleus muscles.
    Higgin D; Krupka A; Maghsoudi OH; Klishko AN; Nichols TR; Lyle MA; Prilutsky BI; Lemay MA
    J Neurophysiol; 2020 Jan; 123(1):70-89. PubMed ID: 31693435
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The recovery of standing and locomotion after spinal cord injury does not require task-specific training.
    Harnie J; Doelman A; de Vette E; Audet J; Desrochers E; Gaudreault N; Frigon A
    Elife; 2019 Dec; 8():. PubMed ID: 31825306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Locomotor capacity attributable to step training versus spontaneous recovery after spinalization in adult cats.
    de Leon RD; Hodgson JA; Roy RR; Edgerton VR
    J Neurophysiol; 1998 Mar; 79(3):1329-40. PubMed ID: 9497414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Partial denervation of ankle extensors prior to spinalization in cats impacts the expression of locomotion and the phasic modulation of reflexes.
    Frigon A; Rossignol S
    Neuroscience; 2009 Feb; 158(4):1675-90. PubMed ID: 19056469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential modulation of crossed and uncrossed reflex pathways by clonidine in adult cats following complete spinal cord injury.
    Frigon A; Johnson MD; Heckman CJ
    J Physiol; 2012 Feb; 590(4):973-89. PubMed ID: 22219338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of stimulating the lumbar skin caudal to a complete spinal cord injury on hindlimb locomotion.
    Hurteau MF; Thibaudier Y; Dambreville C; Desaulniers C; Frigon A
    J Neurophysiol; 2015 Jan; 113(2):669-76. PubMed ID: 25339715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive muscle plasticity of a remaining agonist following denervation of its close synergists in a model of complete spinal cord injury.
    Dambreville C; Charest J; Thibaudier Y; Hurteau MF; Kuczynski V; Grenier G; Frigon A
    J Neurophysiol; 2016 Sep; 116(3):1366-74. PubMed ID: 27358318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ladder Treadmill: A Method to Assess Locomotion in Cats with an Intact or Lesioned Spinal Cord.
    Escalona M; Delivet-Mongrain H; Kundu A; Gossard JP; Rossignol S
    J Neurosci; 2017 May; 37(22):5429-5446. PubMed ID: 28473641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlocomotor and locomotor hindlimb responses evoked by electrical microstimulation of the lumbar cord in spinalized cats.
    Barthélemy D; Leblond H; Provencher J; Rossignol S
    J Neurophysiol; 2006 Dec; 96(6):3273-92. PubMed ID: 16943319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hindlimb endpoint forces predict movement direction evoked by intraspinal microstimulation in cats.
    Lemay MA; Grasse D; Grill WM
    IEEE Trans Neural Syst Rehabil Eng; 2009 Aug; 17(4):379-89. PubMed ID: 19497827
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mid-lumbar segments are needed for the expression of locomotion in chronic spinal cats.
    Langlet C; Leblond H; Rossignol S
    J Neurophysiol; 2005 May; 93(5):2474-88. PubMed ID: 15647400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The "beneficial" effects of locomotor training after various types of spinal lesions in cats and rats.
    Rossignol S; Martinez M; Escalona M; Kundu A; Delivet-Mongrain H; Alluin O; Gossard JP
    Prog Brain Res; 2015; 218():173-98. PubMed ID: 25890137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual spinal lesion paradigm in the cat: evolution of the kinematic locomotor pattern.
    Barrière G; Frigon A; Leblond H; Provencher J; Rossignol S
    J Neurophysiol; 2010 Aug; 104(2):1119-33. PubMed ID: 20573971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Treadmill training enhances the recovery of normal stepping patterns in spinal cord contused rats.
    Heng C; de Leon RD
    Exp Neurol; 2009 Mar; 216(1):139-47. PubMed ID: 19111541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.