These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 19118261)

  • 1. Synthesis and functional activity of tRNAs labeled with fluorescent hydrazides in the D-loop.
    Pan D; Qin H; Cooperman BS
    RNA; 2009 Feb; 15(2):346-54. PubMed ID: 19118261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence characterization of the interaction of various transfer RNA species with elongation factor Tu.GTP: evidence for a new functional role for elongation factor Tu in protein biosynthesis.
    Janiak F; Dell VA; Abrahamson JK; Watson BS; Miller DL; Johnson AE
    Biochemistry; 1990 May; 29(18):4268-77. PubMed ID: 2190631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elongation factor-Tu can repetitively engage aminoacyl-tRNA within the ribosome during the proofreading stage of tRNA selection.
    Morse JC; Girodat D; Burnett BJ; Holm M; Altman RB; Sanbonmatsu KY; Wieden HJ; Blanchard SC
    Proc Natl Acad Sci U S A; 2020 Feb; 117(7):3610-3620. PubMed ID: 32024753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recognition of the universally conserved 3'-CCA end of tRNA by elongation factor EF-Tu.
    Liu JC; Liu M; Horowitz J
    RNA; 1998 Jun; 4(6):639-46. PubMed ID: 9622123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GTP consumption of elongation factor Tu during translation of heteropolymeric mRNAs.
    Rodnina MV; Wintermeyer W
    Proc Natl Acad Sci U S A; 1995 Mar; 92(6):1945-9. PubMed ID: 7892205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-molecule fluorescence measurements of ribosomal translocation dynamics.
    Chen C; Stevens B; Kaur J; Cabral D; Liu H; Wang Y; Zhang H; Rosenblum G; Smilansky Z; Goldman YE; Cooperman BS
    Mol Cell; 2011 May; 42(3):367-77. PubMed ID: 21549313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleotide and aminoacyl-tRNA specificity of the mammalian mitochondrial elongation factor EF-Tu.Ts complex.
    Woriax VL; Spremulli GH; Spremulli LL
    Biochim Biophys Acta; 1996 Jun; 1307(1):66-72. PubMed ID: 8652669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupling of ribosomal L1 stalk and tRNA dynamics during translation elongation.
    Fei J; Kosuri P; MacDougall DD; Gonzalez RL
    Mol Cell; 2008 May; 30(3):348-59. PubMed ID: 18471980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aminoacyl-tRNA-elongation factor Tu-ribosome interaction leading to hydrolysis of guanosine 5'-triphosphate.
    Takahashi K; Ghag S; Chládek S
    Biochemistry; 1986 Dec; 25(25):8330-6. PubMed ID: 3545292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineered EF-Tu and tRNA-Based FRET Screening Assay to Find Inhibitors of Protein Synthesis in Bacteria.
    Bhatt R; Chudaev M; Mandecki W; Goldman E
    Assay Drug Dev Technol; 2018; 16(4):212-221. PubMed ID: 29870274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complete kinetic mechanism of elongation factor Tu-dependent binding of aminoacyl-tRNA to the A site of the E. coli ribosome.
    Pape T; Wintermeyer W; Rodnina MV
    EMBO J; 1998 Dec; 17(24):7490-7. PubMed ID: 9857203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uniform binding of aminoacyl-tRNAs to elongation factor Tu by thermodynamic compensation.
    LaRiviere FJ; Wolfson AD; Uhlenbeck OC
    Science; 2001 Oct; 294(5540):165-8. PubMed ID: 11588263
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational changes of aminoacyl-tRNA and uncharged tRNA upon complex formation with polypeptide chain elongation factor Tu.
    Haruki M; Matsumoto R; Hara-Yokoyama M; Miyazawa T; Yokoyama S
    FEBS Lett; 1990 Apr; 263(2):361-4. PubMed ID: 2335240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Duplication of
    Sato A; Suematsu T; Aihara KK; Kita K; Suzuki T; Watanabe K; Ohtsuki T; Watanabe YI
    Biochem J; 2017 Mar; 474(6):957-969. PubMed ID: 28130490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GE2270A-resistant mutations in elongation factor Tu allow productive aminoacyl-tRNA binding to EF-Tu.GTP.GE2270A complexes.
    Zuurmond AM; Martien de Graaf J; Olsthoorn-Tieleman LN; van Duyl BY; Mörhle VG; Jurnak F; Mesters JR; Hilgenfeld R; Kraal B
    J Mol Biol; 2000 Dec; 304(5):995-1005. PubMed ID: 11124042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutagenesis of glutamine 290 in Escherichia coli and mitochondrial elongation factor Tu affects interactions with mitochondrial aminoacyl-tRNAs and GTPase activity.
    Hunter SE; Spremulli LL
    Biochemistry; 2004 Jun; 43(22):6917-27. PubMed ID: 15170329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of elongation factor G GTPase activity by the ribosomal state. The effects of initiation factors and differentially bound tRNA, aminoacyl-tRNA, and peptidyl-tRNA.
    Voigt J; Nagel K
    J Biol Chem; 1993 Jan; 268(1):100-6. PubMed ID: 8416917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescent labeling of tRNA dihydrouridine residues: Mechanism and distribution.
    Kaur J; Raj M; Cooperman BS
    RNA; 2011 Jul; 17(7):1393-400. PubMed ID: 21628433
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutagenesis of Arg335 in bovine mitochondrial elongation factor Tu and the corresponding residue in the Escherichia coli factor affects interactions with mitochondrial aminoacyl-tRNAs.
    Hunter SE; Spremulli LL
    RNA Biol; 2004 Jul; 1(2):95-102. PubMed ID: 17179748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proofreading and aminoacylation of tRNAs before export from the nucleus.
    Lund E; Dahlberg JE
    Science; 1998 Dec; 282(5396):2082-5. PubMed ID: 9851929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.