These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 1911833)

  • 1. Electromechanical stability of planar lipid membranes from bipolar lipids of the thermoacidophilic archebacterium Sulfolobus acidocaldarius.
    Melikyan GB; Matinyan NS; Kocharov SL; Arakelian VB; Prangishvili DA; Nadareishvili KG
    Biochim Biophys Acta; 1991 Sep; 1068(2):245-8. PubMed ID: 1911833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Certain, but Not All, Tetraether Lipids from the Thermoacidophilic Archaeon
    Bonanno A; Chong PL
    Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular modeling of archaebacterial bipolar tetraether lipid membranes.
    Gabriel JL; Chong PL
    Chem Phys Lipids; 2000 Apr; 105(2):193-200. PubMed ID: 10823467
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Bonanno A; Blake RC; Chong PL
    Int J Mol Sci; 2019 Oct; 20(21):. PubMed ID: 31731418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design, fabrication, and characterization of archaeal tetraether free-standing planar membranes in a PDMS- and PCB-based fluidic platform.
    Ren X; Liu K; Zhang Q; Noh HM; Kumbur EC; Yuan WW; Zhou JG; Chong PL
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12618-28. PubMed ID: 24937508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transfection Studies with Colloidal Systems Containing Highly Purified Bipolar Tetraether Lipids from
    Engelhardt KH; Pinnapireddy SR; Baghdan E; Jedelská J; Bakowsky U
    Archaea; 2017; 2017():8047149. PubMed ID: 28239294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unusual thermal stability of liposomes made from bipolar tetraether lipids.
    Chang EL
    Biochem Biophys Res Commun; 1994 Jul; 202(2):673-9. PubMed ID: 8048936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pressure perturbation and differential scanning calorimetric studies of bipolar tetraether liposomes derived from the thermoacidophilic archaeon Sulfolobus acidocaldarius.
    Chong PL; Ravindra R; Khurana M; English V; Winter R
    Biophys J; 2005 Sep; 89(3):1841-9. PubMed ID: 15980181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low permeability of liposomal membranes composed of bipolar tetraether lipids from thermoacidophilic archaebacterium Sulfolobus acidocaldarius.
    Komatsu H; Chong PL
    Biochemistry; 1998 Jan; 37(1):107-15. PubMed ID: 9425030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene deletions leading to a reduction in the number of cyclopentane rings in Sulfolobus acidocaldarius tetraether lipids.
    Guan Z; Delago A; Nußbaum P; Meyer BH; Albers SV; Eichler J
    FEMS Microbiol Lett; 2018 Jan; 365(1):. PubMed ID: 29211845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and polymorphism of bipolar isopranyl ether lipids from archaebacteria.
    Gulik A; Luzzati V; De Rosa M; Gambacorta A
    J Mol Biol; 1985 Mar; 182(1):131-49. PubMed ID: 3923203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification of glycerol dialkyl nonitol tetraether from Sulfolobus acidocaldarius.
    Lo SL; Montague CE; Chang EL
    J Lipid Res; 1989 Jun; 30(6):944-9. PubMed ID: 2507722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polar Lipid Fraction E from
    Ayesa U; Chong PL
    Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33182284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of the specific growth rate on the lipid composition of Sulfolobus acidocaldarius.
    Quehenberger J; Pittenauer E; Allmaier G; Spadiut O
    Extremophiles; 2020 May; 24(3):413-420. PubMed ID: 32200441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-photon fluorescence microscopy studies of bipolar tetraether giant liposomes from thermoacidophilic archaebacteria Sulfolobus acidocaldarius.
    Bagatolli L; Gratton E; Khan TK; Chong PL
    Biophys J; 2000 Jul; 79(1):416-25. PubMed ID: 10866967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstitution of the leucine transport system of Lactococcus lactis into liposomes composed of membrane-spanning lipids from Sulfolobus acidocaldarius.
    In't Veld G; Elferink MG; Driessen AJ; Konings WN
    Biochemistry; 1992 Dec; 31(49):12493-9. PubMed ID: 1463735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological Membranes in Extreme Conditions: Simulations of Anionic Archaeal Tetraether Lipid Membranes.
    Pineda De Castro LF; Dopson M; Friedman R
    PLoS One; 2016; 11(5):e0155287. PubMed ID: 27167213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stability and rupture of archaebacterial cell membrane: a model study.
    Li S; Zheng F; Zhang X; Wang W
    J Phys Chem B; 2009 Jan; 113(4):1143-52. PubMed ID: 19123825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium-induced aggregation of archaeal bipolar tetraether liposomes derived from the thermoacidophilic archaeon Sulfolobus acidocaldarius.
    Kanichay R; Boni LT; Cooke PH; Khan TK; Chong PL
    Archaea; 2003 Oct; 1(3):175-83. PubMed ID: 15803663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional reconstitution of membrane proteins in monolayer liposomes from bipolar lipids of Sulfolobus acidocaldarius.
    Elferink MG; de Wit JG; Demel R; Driessen AJ; Konings WN
    J Biol Chem; 1992 Jan; 267(2):1375-81. PubMed ID: 1309769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.