BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 19118486)

  • 21. Excess lithium storage and charge compensation in nanoscale Li(4+x)Ti5O12.
    Wang F; Wu L; Ma C; Su D; Zhu Y; Graetz J
    Nanotechnology; 2013 Oct; 24(42):424006. PubMed ID: 24067496
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer.
    Tang Q; Zhou Z; Shen P
    J Am Chem Soc; 2012 Oct; 134(40):16909-16. PubMed ID: 22989058
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Epitaxial growth and electrochemical properties of Li4Ti5O12 thin-film lithium battery anodes.
    Hirayama M; Kim K; Toujigamori T; Cho W; Kanno R
    Dalton Trans; 2011 Mar; 40(12):2882-7. PubMed ID: 21308112
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Resonant inelastic X-ray scattering and X-ray absorption spectroscopy on the negative electrode material Li0.5Ni0.25TiOPO4 in a Li-ion battery.
    Hollmark HM; Maher K; Saadoune I; Gustafsson T; Edström K; Duda LC
    Phys Chem Chem Phys; 2011 Apr; 13(14):6544-51. PubMed ID: 21390362
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tailor-made development of fast Li ion conducting garnet-like solid electrolytes.
    Ramzy A; Thangadurai V
    ACS Appl Mater Interfaces; 2010 Feb; 2(2):385-90. PubMed ID: 20356183
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Challenges and approaches for high-voltage spinel lithium-ion batteries.
    Kim JH; Pieczonka NP; Yang L
    Chemphyschem; 2014 Jul; 15(10):1940-54. PubMed ID: 24862008
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrochemical property: Structure relationships in monoclinic Li(3-y)V2(PO4)3.
    Yin SC; Grondey H; Strobel P; Anne M; Nazar LF
    J Am Chem Soc; 2003 Aug; 125(34):10402-11. PubMed ID: 12926965
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identifying the local structures formed during lithiation of the conversion material, iron fluoride, in a Li ion battery: a solid-state NMR, X-ray diffraction, and pair distribution function analysis study.
    Yamakawa N; Jiang M; Key B; Grey CP
    J Am Chem Soc; 2009 Aug; 131(30):10525-36. PubMed ID: 19585988
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Short- and long-range order in the positive electrode material, Li(NiMn)0.5O2: a joint X-ray and neutron diffraction, pair distribution function analysis and NMR study.
    Bréger J; Dupré N; Chupas PJ; Lee PL; Proffen T; Parise JB; Grey CP
    J Am Chem Soc; 2005 May; 127(20):7529-37. PubMed ID: 15898804
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2MnO3-LiCo(1/3)Ni(1/3)Mn(1/3)O2.
    Yabuuchi N; Yoshii K; Myung ST; Nakai I; Komaba S
    J Am Chem Soc; 2011 Mar; 133(12):4404-19. PubMed ID: 21375288
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthesis and characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the microscale core-shell structure as the positive electrode material for lithium batteries.
    Sun YK; Myung ST; Kim MH; Prakash J; Amine K
    J Am Chem Soc; 2005 Sep; 127(38):13411-8. PubMed ID: 16173775
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An advanced lithium ion battery based on high performance electrode materials.
    Hassoun J; Lee KS; Sun YK; Scrosati B
    J Am Chem Soc; 2011 Mar; 133(9):3139-43. PubMed ID: 21291261
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Crystal chemistry and stability of "Li7La3Zr2O12" garnet: a fast lithium-ion conductor.
    Geiger CA; Alekseev E; Lazic B; Fisch M; Armbruster T; Langner R; Fechtelkord M; Kim N; Pettke T; Weppner W
    Inorg Chem; 2011 Feb; 50(3):1089-97. PubMed ID: 21188978
    [TBL] [Abstract][Full Text] [Related]  

  • 34. First-principles study of lithium ion migration in lithium transition metal oxides with spinel structure.
    Nakayama M; Kaneko M; Wakihara M
    Phys Chem Chem Phys; 2012 Oct; 14(40):13963-70. PubMed ID: 22986640
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A first principles study of spinel ZnFe
    Guo H; Zhang Y; Marschilok AC; Takeuchi KJ; Takeuchi ES; Liu P
    Phys Chem Chem Phys; 2017 Oct; 19(38):26322-26329. PubMed ID: 28936521
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhanced Li+ ion transport in LiNi0.5Mn1.5O4 through control of site disorder.
    Zheng J; Xiao J; Yu X; Kovarik L; Gu M; Omenya F; Chen X; Yang XQ; Liu J; Graff GL; Whittingham MS; Zhang JG
    Phys Chem Chem Phys; 2012 Oct; 14(39):13515-21. PubMed ID: 22968196
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Towards a lattice-matching solid-state battery: synthesis of a new class of lithium-ion conductors with the spinel structure.
    Rosciano F; Pescarmona PP; Houthoofd K; Persoons A; Bottke P; Wilkening M
    Phys Chem Chem Phys; 2013 Apr; 15(16):6107-12. PubMed ID: 23503337
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydrothermal synthesis of Zn2SnO4 as anode materials for Li-ion battery.
    Rong A; Gao XP; Li GR; Yan TY; Zhu HY; Qu JQ; Song DY
    J Phys Chem B; 2006 Aug; 110(30):14754-60. PubMed ID: 16869583
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lithium diffusion pathways and vacancy formation in the Pmmn-Li(1-x)FeO2 electrode material.
    Catti M; Montero-Campillo M
    Phys Chem Chem Phys; 2011 Jun; 13(23):11156-64. PubMed ID: 21573290
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lithium uptake in fixed-pH solution by ion sieves.
    Wang L; Meng CG; Han M; Ma W
    J Colloid Interface Sci; 2008 Sep; 325(1):31-40. PubMed ID: 18585730
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.