BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 1911858)

  • 1. Fast heme release from inactive proteins.
    Paul J; Smith ML; Paul KG
    Biochim Biophys Acta; 1991 Sep; 1079(3):330-4. PubMed ID: 1911858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heme-protein fission under nondenaturing conditions.
    Smith ML; Paul J; Ohlsson PI; Hjortsberg K; Paul KG
    Proc Natl Acad Sci U S A; 1991 Feb; 88(3):882-6. PubMed ID: 1846966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unique cyanide nitrogen-15 nuclear magnetic resonance chemical shift values for cyano-peroxidase complexes. Relevance to the heme active-site structure and mechanism of peroxide activation.
    Behere DV; Gonzalez-Vergara E; Goff HM
    Biochim Biophys Acta; 1985 Dec; 832(3):319-25. PubMed ID: 4074752
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Site-selected fluorescence spectra of porphyrin derivatives of heme proteins.
    Vanderkooi JM; Moy VT; Maniara G; Koloczek H; Paul KG
    Biochemistry; 1985 Dec; 24(27):7931-5. PubMed ID: 3004569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of porphyrin pi-cation radical in myoglobin. A study on one electron oxidation products of nickel (II)-substituted hemoproteins.
    Morishima I; Takeda M; Takatera K
    Biochem Biophys Res Commun; 1988 Mar; 151(3):1319-25. PubMed ID: 2833259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modification of the heme active site to increase the peroxidase activity of thermophilic cytochrome P450: a rational approach.
    Behera RK; Goyal S; Mazumdar S
    J Inorg Biochem; 2010 Nov; 104(11):1185-94. PubMed ID: 20709408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mechanism of spontaneous heme release from horseradish peroxidase isoenzyme A2.
    Smith ML; Hjortsberg K; Ohlsson PI; Paul KG
    Biomed Biochim Acta; 1983; 42(7-8):805-11. PubMed ID: 6651805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-mechanism relationships in hemoproteins. Oxygenations catalyzed by chloroperoxidase and horseradish peroxidase.
    Ortiz de Montellano PR; Choe YS; DePillis G; Catalano CE
    J Biol Chem; 1987 Aug; 262(24):11641-6. PubMed ID: 3624229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Contribution of protein conformation to stereochemistry and reactivity of the active center of heme proteins and enzymes. The existence of horseradish peroxidase conformations and their possible role in the catalysis mechanism].
    Sharonov IuA; Pis'menskiĭ VF; Iarmola EG
    Mol Biol (Mosk); 1988; 22(6):1491-506. PubMed ID: 3252148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mechanism of heme transfer from the cytoplasmic heme binding protein PhuS to the delta-regioselective heme oxygenase of Pseudomonas aeruginosa.
    Bhakta MN; Wilks A
    Biochemistry; 2006 Sep; 45(38):11642-9. PubMed ID: 16981723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct electrochemistry of heme proteins: effect of electrode surface modification by neutral surfactants.
    Chattopadhyay K; Mazumdar S
    Bioelectrochemistry; 2001 Jan; 53(1):17-24. PubMed ID: 11206922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and thermodynamic consequences of b heme binding for monomeric apoglobins and other apoproteins.
    Landfried DA; Vuletich DA; Pond MP; Lecomte JT
    Gene; 2007 Aug; 398(1-2):12-28. PubMed ID: 17550789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of heme-apoprotein interactions on the activity of horseradish and wheat germ peroxidases.
    Fernández M; Rezzano I; Robinsohn A
    Biochem Biophys Res Commun; 1994 Oct; 204(1):1-6. PubMed ID: 7945347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Axial histidyl imidazole non-exchangeable proton resonances as indicators of imidazole hydrogen bonding in ferric cyanide complexes of heme peroxidases.
    La Mar GN; De Ropp JS; Chacko VP; Satterlee JD; Erman JE
    Biochim Biophys Acta; 1982 Nov; 708(3):317-25. PubMed ID: 6293582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solvent isotope effects on NMR spectral parameters in high-spin ferric hemoproteins: an indirect probe for distal hydrogen bonding.
    La Mar GN; Chatfield MJ; Peyton DH; de Ropp JS; Smith WS; Krishnamoorthi R; Satterlee JD; Erman JE
    Biochim Biophys Acta; 1988 Oct; 956(3):267-76. PubMed ID: 2844271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Covalent bonding of the prosthetic heme to protein: a potential mechanism for the suicide inactivation or activation of hemoproteins.
    Osawa Y; Pohl LR
    Chem Res Toxicol; 1989; 2(3):131-41. PubMed ID: 2519716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature-dependent heme kinetics with nonexponential binding and barrier relaxation in the absence of protein conformational substates.
    Ye X; Ionascu D; Gruia F; Yu A; Benabbas A; Champion PM
    Proc Natl Acad Sci U S A; 2007 Sep; 104(37):14682-7. PubMed ID: 17804802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The association rate constant for heme binding to globin is independent of protein structure.
    Hargrove MS; Barrick D; Olson JS
    Biochemistry; 1996 Sep; 35(35):11293-9. PubMed ID: 8784183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of the heme electronic states in equilibrium and nonequilibrium protein conformations of high-spin ferrous hemoproteins. Low temperature magnetic circular dichroism studies.
    Sharonov YA; Sharonova NA; Figlovsky VA; Grigorjev VA
    Biochim Biophys Acta; 1982 Dec; 709(2):332-41. PubMed ID: 6295493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-electron reduction of the oxy form of cobalt-substituted hemoproteins.
    Kobayashi K; Amano M; Hayashi K
    Biochim Biophys Acta; 1990 Mar; 1037(3):297-301. PubMed ID: 2310746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.