These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 1911859)
1. Chemical modification of bovine pancreatic deoxyribonuclease with phenylglyoxal--the involvement of Arg-9 and Arg-41 in substrate binding. Liao TH; Ho HC; Abe A Biochim Biophys Acta; 1991 Sep; 1079(3):335-42. PubMed ID: 1911859 [TBL] [Abstract][Full Text] [Related]
2. Probing the active site residues in aromatic donor oxidation in horseradish peroxidase: involvement of an arginine and a tyrosine residue in aromatic donor binding. Adak S; Mazumder A; Banerjee RK Biochem J; 1996 Mar; 314 ( Pt 3)(Pt 3):985-91. PubMed ID: 8615798 [TBL] [Abstract][Full Text] [Related]
3. Chemical modification of a functional arginine residue of rat liver glycine methyltransferase. Konishi K; Fujioka M Biochemistry; 1987 Dec; 26(25):8496-502. PubMed ID: 3442671 [TBL] [Abstract][Full Text] [Related]
4. Anion transport in red blood cells and arginine-specific reagents. Interaction between the substrate-binding site and the binding site of arginine-specific reagents. Zaki L; Julien T Biochim Biophys Acta; 1985 Sep; 818(3):325-32. PubMed ID: 4041441 [TBL] [Abstract][Full Text] [Related]
6. Chemical modification of the calmodulin-stimulated phosphatase, calcineurin, by phenylglyoxal. King MM; Heiny LP J Biol Chem; 1987 Aug; 262(22):10658-62. PubMed ID: 3611085 [TBL] [Abstract][Full Text] [Related]
7. Phenylglyoxal modification of arginines in mammalian D-amino-acid oxidase. Vanoni MA; Pilone Simonetta M; Curti B; Negri A; Ronchi S Eur J Biochem; 1987 Sep; 167(2):261-7. PubMed ID: 2887428 [TBL] [Abstract][Full Text] [Related]
8. Mechanistic studies on carboxypeptidase A from goat pancreas: role of arginine residue at the active site. Dua RD; Gupta K Arch Biochem Biophys; 1985 Feb; 236(2):479-86. PubMed ID: 3970522 [TBL] [Abstract][Full Text] [Related]
9. Active site labelling of inositol 1,4,5-trisphosphate 3-kinase A by phenylglyoxal. Communi D; Lecocq R; Vanweyenberg V; Erneux C Biochem J; 1995 Aug; 310 ( Pt 1)(Pt 1):109-15. PubMed ID: 7646431 [TBL] [Abstract][Full Text] [Related]
10. Arginine chemical modification of Petunia hybrida 5-enol-pyruvylshikimate-3-phosphate synthase. Padgette SR; Smith CE; Huynh QK; Kishore GM Arch Biochem Biophys; 1988 Oct; 266(1):254-62. PubMed ID: 3178227 [TBL] [Abstract][Full Text] [Related]
11. Evidence for an essential arginine residue at the active site of ATP citrate lyase from rat liver. Ramakrishna S; Benjamin WB Biochem J; 1981 Jun; 195(3):735-43. PubMed ID: 7316981 [TBL] [Abstract][Full Text] [Related]
12. Arginine 343 and 350 are two active residues involved in substrate binding by human Type I D-myo-inositol 1,4,5,-trisphosphate 5-phosphatase. Communi D; Lecocq R; Erneux C J Biol Chem; 1996 May; 271(20):11676-83. PubMed ID: 8662625 [TBL] [Abstract][Full Text] [Related]
13. Chemical modification of arginine residues of rat liver S-adenosylhomocysteinase. Takata Y; Fujioka M J Biol Chem; 1983 Jun; 258(12):7374-8. PubMed ID: 6863250 [TBL] [Abstract][Full Text] [Related]
14. Inhibition and covalent modification of rape seed (Brassica napus) enoyl ACP reductase by phenylglyoxal. Cottingham IR; Austin AJ; Slabas AR Biochim Biophys Acta; 1989 May; 995(3):273-8. PubMed ID: 2706276 [TBL] [Abstract][Full Text] [Related]
15. UDP-glucose 4-epimerase from Saccharomyces fragilis. Presence of an essential arginine residue at the substrate-binding site of the enzyme. Mukherji S; Bhaduri A J Biol Chem; 1986 Apr; 261(10):4519-24. PubMed ID: 3957906 [TBL] [Abstract][Full Text] [Related]
16. Inactivation of Tritrichomonas foetus and Schistosoma mansoni purine phosphoribosyltransferases by arginine-specific reagents. Kanaani J; Maltby D; Somoza JR; Wang CC Eur J Biochem; 1997 Mar; 244(3):810-7. PubMed ID: 9108251 [TBL] [Abstract][Full Text] [Related]
17. Arginine-specific modification of rabbit muscle phosphoglucose isomerase: differences in the inactivation by phenylglyoxal and butanedione and in the protection by substrate analogs. Pullan LM; Igarashi P; Noltmann EA Arch Biochem Biophys; 1983 Mar; 221(2):489-98. PubMed ID: 6838203 [TBL] [Abstract][Full Text] [Related]
18. Chemical modification of rabbit skeletal muscle phosphorylase kinase with phenylglyoxal. Soman G; Graves DJ Arch Biochem Biophys; 1986 Jul; 248(1):341-52. PubMed ID: 3089165 [TBL] [Abstract][Full Text] [Related]
19. Involvement of an arginyl residue in the nucleotide-binding site of Ca(2+)-ATPase from sarcoplasmic reticulum as seen by reaction with phenylglyoxal. Corbalán-García S; Teruel JA; Gómez-Fernández JC Biochem J; 1996 Aug; 318 ( Pt 1)(Pt 1):179-85. PubMed ID: 8761469 [TBL] [Abstract][Full Text] [Related]
20. Inactivation of Escherichia coli 2-amino-3-ketobutyrate CoA ligase by phenylglyoxal and identification of an active-site arginine peptide. Mukherjee JJ; Dekker EE Arch Biochem Biophys; 1992 Nov; 299(1):147-53. PubMed ID: 1444446 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]