These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 19118591)
1. Electrophysiological effects of ghrelin on pedunculopontine tegmental neurons in rats: An in vitro study. Kim J; Nakajima K; Oomura Y; Wayner MJ; Sasaki K Peptides; 2009 Apr; 30(4):745-57. PubMed ID: 19118591 [TBL] [Abstract][Full Text] [Related]
2. Electrophysiological effects of ghrelin on laterodorsal tegmental neurons in rats: an in vitro study. Takano S; Kim J; Ikari Y; Ogaya M; Nakajima K; Oomura Y; Wayner MJ; Sasaki K Peptides; 2009 Oct; 30(10):1901-8. PubMed ID: 19646496 [TBL] [Abstract][Full Text] [Related]
3. Electrophysiological effects of orexins/hypocretins on pedunculopontine tegmental neurons in rats: an in vitro study. Kim J; Nakajima K; Oomura Y; Wayner MJ; Sasaki K Peptides; 2009 Feb; 30(2):191-209. PubMed ID: 18977258 [TBL] [Abstract][Full Text] [Related]
4. Ghrelin postsynaptically depolarizes dorsal raphe neurons in rats in vitro. Ogaya M; Kim J; Sasaki K Peptides; 2011 Aug; 32(8):1606-16. PubMed ID: 21763741 [TBL] [Abstract][Full Text] [Related]
5. Electrophysiological effects of orexin/hypocretin on nucleus accumbens shell neurons in rats: an in vitro study. Mukai K; Kim J; Nakajima K; Oomura Y; Wayner MJ; Sasaki K Peptides; 2009 Aug; 30(8):1487-96. PubMed ID: 19416746 [TBL] [Abstract][Full Text] [Related]
6. Effects of orexins/hypocretins on neuronal activity in the paraventricular nucleus of the thalamus in rats in vitro. Ishibashi M; Takano S; Yanagida H; Takatsuna M; Nakajima K; Oomura Y; Wayner MJ; Sasaki K Peptides; 2005 Mar; 26(3):471-81. PubMed ID: 15652654 [TBL] [Abstract][Full Text] [Related]
7. Effects of ghrelin on neuronal activity in the ventromedial nucleus of the hypothalamus in infantile rats: an in vitro study. Yanagida H; Morita T; Kim J; Yoshida K; Nakajima K; Oomura Y; Wayner MJ; Sasaki K Peptides; 2008 Jun; 29(6):912-8. PubMed ID: 18346818 [TBL] [Abstract][Full Text] [Related]
8. Muscarinic and nicotinic responses in the developing pedunculopontine nucleus (PPN). Good CH; Bay KD; Buchanan R; Skinner RD; Garcia-Rill E Brain Res; 2007 Jan; 1129(1):147-55. PubMed ID: 17156760 [TBL] [Abstract][Full Text] [Related]
9. Electrophysiological effects of neuropeptide S on rat ventromedial hypothalamic neurons in vitro. Yoshida K; Kim J; Nakajima K; Oomura Y; Wayner MJ; Sasaki K Peptides; 2010 Apr; 31(4):712-9. PubMed ID: 19925841 [TBL] [Abstract][Full Text] [Related]
10. Spontaneous REM sleep is modulated by the activation of the pedunculopontine tegmental GABAB receptors in the freely moving rat. Ulloor J; Mavanji V; Saha S; Siwek DF; Datta S J Neurophysiol; 2004 Apr; 91(4):1822-31. PubMed ID: 14702336 [TBL] [Abstract][Full Text] [Related]
11. Orexin-A and ghrelin depolarize the same pedunculopontine tegmental neurons in rats: an in vitro study. Kim J; Nakajima K; Oomura Y; Wayner MJ; Sasaki K Peptides; 2009 Jul; 30(7):1328-35. PubMed ID: 19540431 [TBL] [Abstract][Full Text] [Related]
12. GABA in pedunculo pontine tegmentum regulates spontaneous rapid eye movement sleep by acting on GABAA receptors in freely moving rats. Pal D; Mallick BN Neurosci Lett; 2004 Jul; 365(3):200-4. PubMed ID: 15246548 [TBL] [Abstract][Full Text] [Related]
13. Alpha-2 adrenergic regulation of pedunculopontine nucleus neurons during development. Bay KD; Mamiya K; Good CH; Skinner RD; Garcia-Rill E Neuroscience; 2006 Aug; 141(2):769-779. PubMed ID: 16753270 [TBL] [Abstract][Full Text] [Related]
14. The amygdala and the pedunculopontine tegmental nucleus: interactions controlling active (rapid eye movement) sleep. Xi M; Fung SJ; Zhang J; Sampogna S; Chase MH Exp Neurol; 2012 Nov; 238(1):44-51. PubMed ID: 22971360 [TBL] [Abstract][Full Text] [Related]
15. Urotensin II modulates rapid eye movement sleep through activation of brainstem cholinergic neurons. Huitron-Resendiz S; Kristensen MP; Sánchez-Alavez M; Clark SD; Grupke SL; Tyler C; Suzuki C; Nothacker HP; Civelli O; Criado JR; Henriksen SJ; Leonard CS; de Lecea L J Neurosci; 2005 Jun; 25(23):5465-74. PubMed ID: 15944374 [TBL] [Abstract][Full Text] [Related]
16. Role of noradrenergic and GABA-ergic inputs in pedunculopontine tegmentum for regulation of rapid eye movement sleep in rats. Pal D; Mallick BN Neuropharmacology; 2006 Jul; 51(1):1-11. PubMed ID: 16616214 [TBL] [Abstract][Full Text] [Related]
17. Cholinergic, Glutamatergic, and GABAergic Neurons of the Pedunculopontine Tegmental Nucleus Have Distinct Effects on Sleep/Wake Behavior in Mice. Kroeger D; Ferrari LL; Petit G; Mahoney CE; Fuller PM; Arrigoni E; Scammell TE J Neurosci; 2017 Feb; 37(5):1352-1366. PubMed ID: 28039375 [TBL] [Abstract][Full Text] [Related]
18. Effects of ghrelin on glucose-sensing and gastric distension sensitive neurons in rat dorsal vagal complex. Wang WG; Chen X; Jiang H; Jiang ZY Regul Pept; 2008 Feb; 146(1-3):169-75. PubMed ID: 17913259 [TBL] [Abstract][Full Text] [Related]
19. Ghrelin alone or co-administered with GHRH or CRH increases non-REM sleep and decreases REM sleep in young males. Kluge M; Schüssler P; Bleninger P; Kleyer S; Uhr M; Weikel JC; Yassouridis A; Zuber V; Steiger A Psychoneuroendocrinology; 2008 May; 33(4):497-506. PubMed ID: 18329818 [TBL] [Abstract][Full Text] [Related]
20. Sleep-wake states and cortical synchronization control by pregnenolone sulfate into the pedunculopontine nucleus. Darbra S; George O; Bouyer JJ; Piazza PV; Le Moal M; Mayo W J Neurosci Res; 2004 Jun; 76(5):742-7. PubMed ID: 15139033 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]