These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

344 related articles for article (PubMed ID: 19118836)

  • 1. Versatile method for electroosmotic flow measurements in microchip electrophoresis.
    Shakalisava Y; Poitevin M; Viovy JL; Descroix S
    J Chromatogr A; 2009 Feb; 1216(6):1030-3. PubMed ID: 19118836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low electroosmotic flow measurement by tilting microchip.
    Zhou F; Wang W; Wu WY; Zhang JR; Zhu JJ
    J Chromatogr A; 2008 Jun; 1194(2):221-4. PubMed ID: 18499115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low EOF rate measurement based on constant effective mobility in microchip CE.
    Wang W; Zhao L; Zhou F; Zhang JR; Zhu JJ; Chen HY
    Electrophoresis; 2007 Aug; 28(16):2893-6. PubMed ID: 17702065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of electroosmotic flow in capillary and microchip electrophoresis.
    Wang W; Zhou F; Zhao L; Zhang JR; Zhu JJ
    J Chromatogr A; 2007 Nov; 1170(1-2):1-8. PubMed ID: 17915240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EOF measurement by detection of a sampling zone with end-channel amperometry in microchip CE.
    Wang W; Zhao L; Jiang LP; Zhang JR; Zhu JJ; Chen HY
    Electrophoresis; 2006 Dec; 27(24):5132-7. PubMed ID: 17161004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of an integrated direct-contacting optical-fiber microchip with light-emitting diode-induced fluorescence detection.
    Liu C; Cui D; Chen X
    J Chromatogr A; 2007 Nov; 1170(1-2):101-6. PubMed ID: 17915241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PDMS microchip coated with polydopamine/gold nanoparticles hybrid for efficient electrophoresis separation of amino acids.
    Liang RP; Meng XY; Liu CM; Qiu JD
    Electrophoresis; 2011 Nov; 32(23):3331-40. PubMed ID: 22134977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A rigid poly(dimethylsiloxane) sandwich electrophoresis microchip based on thin-casting method.
    Liu C; Cui D; Cai H; Chen X; Geng Z
    Electrophoresis; 2006 Jul; 27(14):2917-23. PubMed ID: 16721901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling of electroosmotic and electrophoretic mobilization in capillary and microchip isoelectric focusing.
    Thormann W; Caslavska J; Mosher RA
    J Chromatogr A; 2007 Jul; 1155(2):154-63. PubMed ID: 17307189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Steady surface modification of polydimethylsiloxane microchannel and its application in simultaneous analysis of homocysteine and glutathione in human serum.
    Miyaki K; Zeng HL; Nakagama T; Uchiyama K
    J Chromatogr A; 2007 Sep; 1166(1-2):201-6. PubMed ID: 17761187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Indirect amperometric measurement of electroosmotic flow rates and effective mobilities in microchip capillary electrophoresis.
    Wang W; Zhao L; Zhang JR; Zhu JJ
    J Chromatogr A; 2007 Feb; 1142(2):209-13. PubMed ID: 17222859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly efficient dynamic modification of plastic microfluidic devices using proteins in microchip capillary electrophoresis.
    Naruishi N; Tanaka Y; Higashi T; Wakida S
    J Chromatogr A; 2006 Oct; 1130(2):169-74. PubMed ID: 16860810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. "Click" chemistry-based surface modification of poly(dimethylsiloxane) for protein separation in a microfluidic chip.
    Zhang Z; Feng X; Xu F; Liu X; Liu BF
    Electrophoresis; 2010 Sep; 31(18):3129-36. PubMed ID: 20872614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measuring electroosmotic flow in microchips and capillaries.
    Gilman SD; Chapman PJ
    Methods Mol Biol; 2006; 339():187-202. PubMed ID: 16790874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isoelectric focusing in a poly(dimethylsiloxane) microfluidic chip.
    Cui H; Horiuchi K; Dutta P; Ivory CF
    Anal Chem; 2005 Mar; 77(5):1303-9. PubMed ID: 15732911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of PVP on the electroosmotic mobility of wet-etched glass microchannels.
    Milanova D; Chambers RD; Bahga SS; Santiago JG
    Electrophoresis; 2012 Nov; 33(21):3259-62. PubMed ID: 23065690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glucose microfluidic biosensors based on immobilizing glucose oxidase in poly(dimethylsiloxane) electrophoretic microchips.
    Zhang Q; Xu JJ; Chen HY
    J Chromatogr A; 2006 Nov; 1135(1):122-6. PubMed ID: 17046001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface modification with BSA blocking based on in situ synthesized gold nanoparticles in poly(dimethylsiloxane) microchip.
    Fan DH; Yuan SW; Shen YM
    Colloids Surf B Biointerfaces; 2010 Feb; 75(2):608-11. PubMed ID: 19896345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modification of poly(dimethylsiloxane) microfluidic channels with silica nanoparticles based on layer-by-layer assembly technique.
    Wang W; Zhao L; Zhang JR; Wang XM; Zhu JJ; Chen HY
    J Chromatogr A; 2006 Dec; 1136(1):111-7. PubMed ID: 17078959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of zeta potential of electroosmotic flow in a microchannel using a reduced-order model.
    Park HM; Hong SM; Lee JS
    Biomed Microdevices; 2007 Oct; 9(5):751-60. PubMed ID: 17530411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.