BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 1911884)

  • 1. Reduced growth of Ehrlich ascites tumor cells in creatine depleted mice fed beta-guanidinopropionic acid.
    Ohira Y; Ishine S; Inoue N; Yunoki K
    Biochim Biophys Acta; 1991 Sep; 1097(2):117-22. PubMed ID: 1911884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of creatine and beta-guanidinopropionic acid on the growth of Ehrlich ascites tumor cells: i.p. injection and culture study.
    Ohira Y; Inoue N
    Biochim Biophys Acta; 1995 Apr; 1243(3):367-72. PubMed ID: 7727511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Muscle creatine: in vivo depletion by feeding beta-guanidinopropionic acid.
    Shields RP; Whitehair CK
    Can J Biochem; 1973 Jul; 51(7):1046-9. PubMed ID: 4725354
    [No Abstract]   [Full Text] [Related]  

  • 4. Effects of the creatine analogue beta-guanidinopropionic acid on skeletal muscles of mice deficient in muscle creatine kinase.
    van Deursen J; Jap P; Heerschap A; ter Laak H; Ruitenbeek W; Wieringa B
    Biochim Biophys Acta; 1994 May; 1185(3):327-35. PubMed ID: 8180237
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A 31P-nuclear magnetic resonance study of skeletal muscle metabolism in rats depleted of creatine with the analogue beta-guanidinopropionic acid.
    Shoubridge EA; Radda GK
    Biochim Biophys Acta; 1984 Sep; 805(1):79-88. PubMed ID: 6477974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased growth of brown adipose tissue but its reduced thermogenic activity in creatine-depleted rats fed beta-guanidinopropionic acid.
    Yamashita H; Ohira Y; Wakatsuki T; Yamamoto M; Kizaki T; Oh-ishi S; Ohno H
    Biochim Biophys Acta; 1995 Jun; 1230(1-2):69-73. PubMed ID: 7612643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thyrotoxic myopathy in mice: accentuation by a creatine transport inhibitor.
    Otten JV; Fitch CD; Wheatley JB; Fischer VW
    Metabolism; 1986 Jun; 35(6):481-4. PubMed ID: 3713511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo brain phosphocreatine and ATP regulation in mice fed a creatine analog.
    Holtzman D; Meyers R; O'Gorman E; Khait I; Wallimann T; Allred E; Jensen F
    Am J Physiol; 1997 May; 272(5 Pt 1):C1567-77. PubMed ID: 9176148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-insulin and non-exercise related increase of glucose utilization in rats and mice.
    Ohira Y; Ishine S; Tabata I; Kurata H; Wakatsuki T; Sugawara S; Yasui W; Tanaka H; Kuroda Y
    Jpn J Physiol; 1994; 44(4):391-402. PubMed ID: 7869601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of creatine and its analog, β-guanidinopropionic acid, on the differentiation of and nucleoli in myoblasts.
    Ohira Y; Matsuoka Y; Kawano F; Ogura A; Higo Y; Ohira T; Terada M; Oke Y; Nakai N
    Biosci Biotechnol Biochem; 2011; 75(6):1085-9. PubMed ID: 21670531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of the creatine analogue beta-guanidinopropionic acid on energy metabolism: a systematic review.
    Oudman I; Clark JF; Brewster LM
    PLoS One; 2013; 8(1):e52879. PubMed ID: 23326362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myocardial adaptation to creatine deficiency in rats fed with beta-guanidinopropionic acid, a creatine analogue.
    Mekhfi H; Hoerter J; Lauer C; Wisnewsky C; Schwartz K; Ventura-Clapier R
    Am J Physiol; 1990 Apr; 258(4 Pt 2):H1151-8. PubMed ID: 2184680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contractile economy and aerobic recovery metabolism in skeletal muscle adapted to creatine depletion.
    Moerland TS; Kushmerick MJ
    Am J Physiol; 1994 Jul; 267(1 Pt 1):C127-37. PubMed ID: 8048475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Creatine depletion elicits structural, biochemical, and physiological adaptations in rat costal diaphragm.
    Levine S; Tikunov B; Henson D; LaManca J; Sweeney HL
    Am J Physiol; 1996 Nov; 271(5 Pt 1):C1480-6. PubMed ID: 8944630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of muscle creatine content manipulation on contractile properties in mouse muscles.
    Eijnde BO; Lebacq J; Ramaekers M; Hespel P
    Muscle Nerve; 2004 Mar; 29(3):428-35. PubMed ID: 14981743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brain creatine phosphate and creatine kinase in mice fed an analogue of creatine.
    Holtzman D; McFarland E; Moerland T; Koutcher J; Kushmerick MJ; Neuringer LJ
    Brain Res; 1989 Mar; 483(1):68-77. PubMed ID: 2706511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptation of muscle to creatine depletion: effect on GLUT-4 glucose transporter expression.
    Ren JM; Semenkovich CF; Holloszy JO
    Am J Physiol; 1993 Jan; 264(1 Pt 1):C146-50. PubMed ID: 8430763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic modulation of muscle fiber properties unrelated to mechanical stimuli.
    Ohira Y; Kawano F; Roy RR; Edgerton VR
    Jpn J Physiol; 2003 Dec; 53(6):389-400. PubMed ID: 15038837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antitumor activity of creatine analogs produced by alterations in pancreatic hormones and glucose metabolism.
    Ara G; Gravelin LM; Kaddurah-Daouk R; Teicher BA
    In Vivo; 1998; 12(2):223-31. PubMed ID: 9627806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Creatine analogue beta-guanidinopropionic acid alters skeletal muscle AMP deaminase activity.
    Tullson PC; Rundell KW; Sabina RL; Terjung RL
    Am J Physiol; 1996 Jan; 270(1 Pt 1):C76-85. PubMed ID: 8772432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.