These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 19118862)

  • 1. Removal of ammonia by immobilized Nitrosomonas europaea in a biotrickling filter packed with polyurethane foam.
    Ramírez M; Gómez JM; Aroca G; Cantero D
    Chemosphere; 2009 Mar; 74(10):1385-90. PubMed ID: 19118862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of hydrogen sulfide and ammonia from gas mixtures by co-immobilized cells using a new configuration of two biotrickling filters.
    Ramirez M; Gómez JM; Aroca G; Cantero D
    Water Sci Technol; 2009; 59(7):1353-9. PubMed ID: 19381001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of hydrogen sulfide by immobilized Thiobacillus thioparus in a biotrickling filter packed with polyurethane foam.
    Ramírez M; Gómez JM; Aroca G; Cantero D
    Bioresour Technol; 2009 Nov; 100(21):4989-95. PubMed ID: 19501506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative study of the eliminating of waste gas containing toluene in twin biotrickling filters packed with molecular sieve and polyurethane foam.
    He Z; Zhou L; Li G; Zeng X; An T; Sheng G; Fu J; Bai Z
    J Hazard Mater; 2009 Aug; 167(1-3):275-81. PubMed ID: 19185995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biofiltration of waste gases containing a mixture of formaldehyde and methanol.
    Prado OJ; Veiga MC; Kennes C
    Appl Microbiol Biotechnol; 2004 Aug; 65(2):235-42. PubMed ID: 15105973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ammonia removal from a waste air stream using a biotrickling filter packed with polyurethane foam through the SND process.
    Moussavi G; Khavanin A; Sharifi A
    Bioresour Technol; 2011 Feb; 102(3):2517-22. PubMed ID: 21130644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of aeration modes on the characteristics of composting emissions and the NH3 removal efficiency by using biotrickling filter.
    Wu C; Wang Q; Sun X; Xue N; Liu S; Xie W
    Waste Manag; 2011 Aug; 31(8):1702-10. PubMed ID: 21550222
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Treatment of H2S using a horizontal biotrickling filter based on biological activated carbon: reactor setup and performance evaluation.
    Duan H; Koe LC; Yan R
    Appl Microbiol Biotechnol; 2005 Apr; 67(1):143-9. PubMed ID: 15538552
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous autotrophic biodegradation of H2S and NH3 in a biotrickling filter.
    Jiang X; Yan R; Tay JH
    Chemosphere; 2009 Jun; 75(10):1350-5. PubMed ID: 19289244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of nitrogen source and empty bed residence time on the removal of styrene gaseous emissions by biotrickling filtration.
    Sempere F; Martínez-Soria V; Palau J; Penya-Roja JM; San-Valero P; Gabaldón C
    Bioprocess Biosyst Eng; 2011 Sep; 34(7):859-67. PubMed ID: 21442419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of nitrite reductase in the ammonia-oxidizing pathway of Nitrosomonas europaea.
    Cantera JJ; Stein LY
    Arch Microbiol; 2007 Oct; 188(4):349-54. PubMed ID: 17541778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The treatment of waste air containing phenol vapors in biotrickling filter.
    Moussavi G; Mohseni M
    Chemosphere; 2008 Aug; 72(11):1649-54. PubMed ID: 18625512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Axenic cultures of Nitrosomonas europaea and Nitrobacter winogradskyi in autotrophic conditions: a new protocol for kinetic studies.
    Farges B; Poughon L; Roriz D; Creuly C; Dussap CG; Lasseur C
    Appl Biochem Biotechnol; 2012 Jul; 167(5):1076-91. PubMed ID: 22451350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance of an immobilized cell biofilter for ammonia removal from contaminated air stream.
    Kim JH; Rene ER; Park HS
    Chemosphere; 2007 Jun; 68(2):274-80. PubMed ID: 17316754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the removal of ethanethiol in twin-biotrickling filters inoculated with strain RG-1 and B350 mixed microorganisms.
    An T; Wan S; Li G; Sun L; Guo B
    J Hazard Mater; 2010 Nov; 183(1-3):372-80. PubMed ID: 20692095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal efficiency of high-concentration H2S in a pilot-scale biotrickling filter.
    Chen JM; Jiang LY; Sha HL
    Environ Technol; 2006 Jul; 27(7):759-66. PubMed ID: 16894820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of cyclohexane gaseous emissions using a biotrickling filter system.
    Salamanca D; Dobslaw D; Engesser KH
    Chemosphere; 2017 Jun; 176():97-107. PubMed ID: 28260660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-term performance of peat biofilters treating ethyl acetate, toluene, and its mixture in air.
    Alvarez-Hornos FJ; Gabaldón C; Martínez-Soria V; Marzal P; Penya-Roja JM; Izquierdo M
    Biotechnol Bioeng; 2007 Mar; 96(4):651-60. PubMed ID: 16865729
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Startup and long-term performance of biotrickling filters packed with polyurethane foam and poplar wood chips treating a mixture of ethylmercaptan, H2S, and NH3.
    Hernández J; Lafuente J; Prado OJ; Gabriel D
    J Air Waste Manag Assoc; 2013 Apr; 63(4):462-71. PubMed ID: 23687731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomass control in waste air biotrickling filters by protozoan predation.
    Cox HH; Deshusses MA
    Biotechnol Bioeng; 1999 Jan; 62(2):216-24. PubMed ID: 10099532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.