BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 19118863)

  • 1. Auto- and heterotrophic acidophilic bacteria enhance the bioremediation efficiency of sediments contaminated by heavy metals.
    Beolchini F; Dell'Anno A; De Propris L; Ubaldini S; Cerrone F; Danovaro R
    Chemosphere; 2009 Mar; 74(10):1321-6. PubMed ID: 19118863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioremediation of heavy metal-contaminated soils by sulfate-reducing bacteria.
    Jiang W; Fan W
    Ann N Y Acad Sci; 2008 Oct; 1140():446-54. PubMed ID: 18991946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioremediation of diesel oil in a co-contaminated soil by bioaugmentation with a microbial formula tailored with native strains selected for heavy metals resistance.
    Alisi C; Musella R; Tasso F; Ubaldi C; Manzo S; Cremisini C; Sprocati AR
    Sci Total Environ; 2009 Apr; 407(8):3024-32. PubMed ID: 19201450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of ferric ion on bioleaching of heavy metals from contaminated sediment.
    Chen SY; Lin JG; Lee CY
    Water Sci Technol; 2003; 48(8):151-8. PubMed ID: 14682582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of sulphur concentration on bioleaching of heavy metals from contaminated dredged sediments.
    Fang D; Zhao L; Yang ZQ; Shan HX; Gao Y; Yang Q
    Environ Technol; 2009 Nov; 30(12):1241-8. PubMed ID: 19950466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioremediation of petroleum hydrocarbons in anoxic marine sediments: consequences on the speciation of heavy metals.
    Dell'Anno A; Beolchini F; Gabellini M; Rocchetti L; Pusceddu A; Danovaro R
    Mar Pollut Bull; 2009 Dec; 58(12):1808-14. PubMed ID: 19740495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From industrial sites to environmental applications with Cupriavidus metallidurans.
    Diels L; Van Roy S; Taghavi S; Van Houdt R
    Antonie Van Leeuwenhoek; 2009 Aug; 96(2):247-58. PubMed ID: 19582590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An integrated microbial process for the bioremediation of soil contaminated with toxic metals.
    White C; Sharman AK; Gadd GM
    Nat Biotechnol; 1998 Jun; 16(6):572-5. PubMed ID: 9624690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of bacterial activities on the release of heavy metals from contaminated dredged sediments.
    Lors C; Tiffreau C; Laboudigue A
    Chemosphere; 2004 Aug; 56(6):619-30. PubMed ID: 15212904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of initial pH on bioleaching of heavy metals from contaminated soil employing indigenous Acidithiobacillus thiooxidans.
    Kumar RN; Nagendran R
    Chemosphere; 2007 Jan; 66(9):1775-81. PubMed ID: 16979697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differences in Cd and Zn bioaccumulation for the flood-tolerant Salix cinerea rooting in seasonally flooded contaminated sediments.
    Vandecasteele B; Laing GD; Quataert P; Tack FM
    Sci Total Environ; 2005 Apr; 341(1-3):251-63. PubMed ID: 15833256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of multiple metal resistant bacteria from contaminated lake sediments on metal accumulation and plant growth.
    Li K; Ramakrishna W
    J Hazard Mater; 2011 May; 189(1-2):531-9. PubMed ID: 21420236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of heavy metals and arsenic from contaminated soils using bioremediation and chelant extraction techniques.
    Vaxevanidou K; Papassiopi N; Paspaliaris I
    Chemosphere; 2008 Feb; 70(8):1329-37. PubMed ID: 18037468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual augmentation for aerobic bioremediation of MTBE and TCE pollution in heavy metal-contaminated soil.
    Fernandes VC; Albergaria JT; Oliva-Teles T; Delerue-Matos C; De Marco P
    Biodegradation; 2009 Jun; 20(3):375-82. PubMed ID: 18987783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of biotechnological strategies for the valorization of metal bearing wastes.
    Beolchini F; Fonti V; Dell'Anno A; Rocchetti L; Vegliò F
    Waste Manag; 2012 May; 32(5):949-56. PubMed ID: 22088958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of different types of elemental sulfur on bioleaching of heavy metals from contaminated sediments.
    Seidel H; Wennrich R; Hoffmann P; Löser C
    Chemosphere; 2006 Mar; 62(9):1444-53. PubMed ID: 16054192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel pollutant-resistant methylotrophic bacteria for use in bioremediation.
    De Marco P; Pacheco CC; Figueiredo AR; Moradas-Ferreira P
    FEMS Microbiol Lett; 2004 May; 234(1):75-80. PubMed ID: 15109722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioleaching of heavy metals from contaminated sediment by indigenous sulfur-oxidizing bacteria in an air-lift bioreactor: effects of sulfur concentration.
    Chen SY; Lin JG
    Water Res; 2004; 38(14-15):3205-14. PubMed ID: 15276736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fractionation behavior of heavy metals in soil during bioleaching with Acidithiobacillus thiooxidans.
    Naresh Kumar R; Nagendran R
    J Hazard Mater; 2009 Sep; 169(1-3):1119-26. PubMed ID: 19464109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial contribution to mitigation of iron and manganese in mangrove sediments.
    Krishnan KP; Fernandes SO; Chandan GS; Loka Bharathi PA
    Mar Pollut Bull; 2007 Sep; 54(9):1427-33. PubMed ID: 17632183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.