BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 191189)

  • 41. Adenosine formation and metabolism during adenosine triphosphate catabolism in Ehrlich ascites tumor cells.
    Lomax CA; Henderson JF
    Cancer Res; 1973 Nov; 33(11):2825-9. PubMed ID: 4748438
    [No Abstract]   [Full Text] [Related]  

  • 42. The metabolism of adenine derivatives in different parts of the brain of the rat, and their release from hypothalamic preparations on excitation.
    Sun MC; McIlwain H; Pull I
    J Neurobiol; 1976 Mar; 7(2):109-22. PubMed ID: 1262867
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Effect of changes in the oxygen metabolism on the energy metabolism and proliferation of Ehrlich ascites tumor cells cultured in vitro (author's transl)].
    Krause HP; Schneider F
    Hoppe Seylers Z Physiol Chem; 1974 Nov; 355(11):1335-40. PubMed ID: 4461637
    [No Abstract]   [Full Text] [Related]  

  • 44. Inhibition of purine ribonucleotide and phosphoribosyl pyrophosphate synthesis by 6-cyclopentylthio-9-hydroxymethylpurine and structurally related compounds.
    Smith CM; Fontenelle LJ; Lalanne M; Henderson JF
    Cancer Res; 1974 Mar; 34(3):463-7. PubMed ID: 4359876
    [No Abstract]   [Full Text] [Related]  

  • 45. Measurement of both cyclic [3H]AMP and cyclic [3H]GMP in cultured vascular smooth muscle cells labeled with [3H]hypoxanthine: use in studies of cardiovascular drugs.
    Maurice DH; Lee RM; Haslam RJ
    Anal Biochem; 1993 Nov; 215(1):110-7. PubMed ID: 8297002
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Inosine monophosphate production is proportional to muscle force in vitro.
    Brooke MH; Choksi R; Kaiser KK
    Neurology; 1986 Feb; 36(2):288-91. PubMed ID: 3945403
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Maintenance of meiotic arrest in mouse oocytes by purines: modulation of cAMP levels and cAMP phosphodiesterase activity.
    Downs SM; Daniel SA; Bornslaeger EA; Hoppe PC; Eppig JJ
    Gamete Res; 1989 Jul; 23(3):323-34. PubMed ID: 2476369
    [TBL] [Abstract][Full Text] [Related]  

  • 48. High-pressure liquid chromatography: a tool for study of enzyme reactions involving purines and purine nucleotides.
    Vasquez B; Bieber AL
    Anal Biochem; 1977 May; 79(1-2):52-7. PubMed ID: 194500
    [No Abstract]   [Full Text] [Related]  

  • 49. The metabolism of purine compounds in Ehrlich ascites tumor cells: evidence for a salvage pathway of inosine metabolism.
    Meikle AW; Gotto AM; Touster O
    Biochim Biophys Acta; 1967 May; 138(3):445-51. PubMed ID: 6036845
    [No Abstract]   [Full Text] [Related]  

  • 50. Studies on the nature of the regulation by purine nucleotides of adenine phosphoribosyltransferase and of hypoxanthine phosphoribosyltransferase from Ehrlich ascites-tumour cells.
    Murray AW
    Biochem J; 1967 Apr; 103(1):271-9. PubMed ID: 6068004
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of K deficiency on oxidative metabolism in Ehrlich ascites tumor cells.
    Moroff G; Gordon EE
    Biochim Biophys Acta; 1973 Dec; 325(3):406-12. PubMed ID: 4778288
    [No Abstract]   [Full Text] [Related]  

  • 52. Apparent equilibrium constant of the hypoxanthine guanine phosphoribosyltransferase-catalyzed IMP-GMP exchange.
    Salerno C; Giacomello A
    Experientia; 1982 Oct; 38(10):1196-7. PubMed ID: 6291980
    [No Abstract]   [Full Text] [Related]  

  • 53. Effects of elevated intracellular ATP and GTP concentrations on purine ribonucleotide synthesis and interconversion.
    Snyder FF; Henderson JF
    Can J Biochem; 1973 Jun; 51(6):943-8. PubMed ID: 4736824
    [No Abstract]   [Full Text] [Related]  

  • 54. Hypoxanthine-maintained two-cell block in mouse embryos: dependence on glucose and effect of hypoxanthine phosphoribosyltransferase inhibitors.
    Downs SM; Dow MP
    Biol Reprod; 1991 Jun; 44(6):1025-39. PubMed ID: 1873380
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sources of nitrogen as rate-limiting factors for purine biosynthesis de novo in Ehrlich ascites tumor cells.
    Fontenelle LJ; Henderson JF
    Biochim Biophys Acta; 1969 Feb; 177(1):88-93. PubMed ID: 4305525
    [No Abstract]   [Full Text] [Related]  

  • 56. Evidence for distinct catabolic pathways of adenine ribonucleotides and deoxyribonucleotides in human T lymphoblastoid cells.
    Barankiewicz J; Cohen A
    J Biol Chem; 1984 Dec; 259(24):15178-81. PubMed ID: 6334686
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Pathways of purine metabolism in human adipocytes. Further evidence against a role of adenosine as an endogenous regulator of human fat cell function.
    Kather H
    J Biol Chem; 1990 Jan; 265(1):96-102. PubMed ID: 2294125
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Purine salvage and metabolism in Babesia bovis.
    Matias C; Nott SE; Bagnara AS; O'Sullivan WJ; Gero AM
    Parasitol Res; 1990; 76(3):207-13. PubMed ID: 1690419
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Purine metabolism in Neisseria meningitidis. 1. Utilization of exogenous adenine.
    Jyssum S
    Acta Pathol Microbiol Scand B Microbiol Immunol; 1974 Aug; 82(4):508-20. PubMed ID: 4213336
    [No Abstract]   [Full Text] [Related]  

  • 60. Guanine nucleotides and their significance in biochemical processes.
    Pogson TC
    Am J Clin Nutr; 1974 Apr; 27(4):380-402. PubMed ID: 4361701
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.