These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Arsenic levels in the soils and macrophytes of the 'Entremuros' after the Aznalcóllar mine spill. Taggart MA; Carlisle M; Pain DJ; Williams R; Green D; Osborn D; Meharg AA Environ Pollut; 2005 Jan; 133(1):129-38. PubMed ID: 15327863 [TBL] [Abstract][Full Text] [Related]
43. Reclamation of a mine contaminated soil using biologically reactive organic matrices. Alvarenga P; Gonçalves AP; Fernandes RM; de Varennes A; Duarte E; Cunha-Queda AC; Vallini G Waste Manag Res; 2009 Mar; 27(2):101-11. PubMed ID: 19244409 [TBL] [Abstract][Full Text] [Related]
44. Application, chemistry, and environmental implications of contaminant-immobilization amendments on agricultural soil and water quality. Udeigwe TK; Eze PN; Teboh JM; Stietiya MH Environ Int; 2011 Jan; 37(1):258-67. PubMed ID: 20832118 [TBL] [Abstract][Full Text] [Related]
45. Effect of organic matter amendment, arsenic amendment and water management regime on rice grain arsenic species. Norton GJ; Adomako EE; Deacon CM; Carey AM; Price AH; Meharg AA Environ Pollut; 2013 Jun; 177():38-47. PubMed ID: 23466730 [TBL] [Abstract][Full Text] [Related]
46. Spatial distribution and vertical variation of arsenic in Guangdong soil profiles, China. Zhang HH; Yuan HX; Hu YG; Wu ZF; Zhu LA; Zhu L; Li FB; Li DQ Environ Pollut; 2006 Nov; 144(2):492-9. PubMed ID: 16563579 [TBL] [Abstract][Full Text] [Related]
47. Does arsenic in soil contribute to arsenic urinary concentrations in a French population living in a naturally arsenic contaminated area? Fillol C; Dor F; Clozel B; Goria S; Seta N Sci Total Environ; 2010 Nov; 408(23):6011-6. PubMed ID: 20863552 [TBL] [Abstract][Full Text] [Related]
48. Do earthworms impact metal mobility and availability in soil?--a review. Sizmur T; Hodson ME Environ Pollut; 2009 Jul; 157(7):1981-9. PubMed ID: 19321245 [TBL] [Abstract][Full Text] [Related]
49. Effect of arsenic-contaminated irrigation water on agricultural land soil and plants in West Bengal, India. Roychowdhury T; Tokunaga H; Uchino T; Ando M Chemosphere; 2005 Feb; 58(6):799-810. PubMed ID: 15621193 [TBL] [Abstract][Full Text] [Related]
50. Arsenic solubility and distribution in poultry waste and long-term amended soil. Han FX; Kingery WL; Selim HM; Gerard PD; Cox MS; Oldham JL Sci Total Environ; 2004 Mar; 320(1):51-61. PubMed ID: 14987926 [TBL] [Abstract][Full Text] [Related]
51. Risk characterization, assessment, and management of organic pollutants in beneficially used residual products. Kester GB; Brobst RB; Carpenter A; Chaney RL; Rubin AB; Schoof RA; Taylor DS J Environ Qual; 2005; 34(1):80-90. PubMed ID: 15647537 [TBL] [Abstract][Full Text] [Related]
52. Soil risk assessment of As and Zn contamination in a coal mining region using geostatistics [corrected]. Komnitsas K; Modis K Sci Total Environ; 2006 Dec; 371(1-3):190-6. PubMed ID: 17046048 [TBL] [Abstract][Full Text] [Related]
53. Arsenic contamination in sesame and possible mitigation through organic interventions in the lower Gangetic Plain of West Bengal, India. Sinha B; Bhattacharyya K; Giri PK; Sarkar S J Sci Food Agric; 2011 Dec; 91(15):2762-7. PubMed ID: 21744355 [TBL] [Abstract][Full Text] [Related]
54. [Risk assessment of soil contamination in a residential area: the importance and role of human biological monitoring--a case report]. Ewers U; Boening D; Albrecht J; Rädel R; Peter G; Uthoff T Gesundheitswesen; 2004; 66(8-9):536-44. PubMed ID: 15372356 [TBL] [Abstract][Full Text] [Related]
55. [Older soil contaminations and human biomonitoring--two typical examples]. Roscher E; Arnholdt W Gesundheitswesen; 2006 Dec; 68(12):787-95. PubMed ID: 17203454 [TBL] [Abstract][Full Text] [Related]
56. An integrated health risk assessment approach to the study of mining sites contaminated with arsenic and lead. Jasso-Pineda Y; Espinosa-Reyes G; González-Mille D; Razo-Soto I; Carrizales L; Torres-Dosal A; Mejia-Saavedra J; Monroy M; Ize AI; Yarto M; Díaz-Barriga F Integr Environ Assess Manag; 2007 Jul; 3(3):344-50. PubMed ID: 17695107 [TBL] [Abstract][Full Text] [Related]
57. Methodology for setting risk-based concentrations of contaminants in soil and groundwater and application to a model contaminated site. Fujinaga A; Uchiyama I; Morisawa S; Yoneda M; Sasamoto Y Risk Anal; 2012 Jan; 32(1):122-37. PubMed ID: 21978276 [TBL] [Abstract][Full Text] [Related]
58. Collateral benefits and hidden hazards of soil arsenic during abatement assessment of residential lead hazards. Elless MP; Ferguson BW; Bray CA; Patch S; Mielke H; Blaylock MJ Environ Pollut; 2008 Nov; 156(1):20-8. PubMed ID: 18328607 [TBL] [Abstract][Full Text] [Related]
59. Distribution of soil arsenic species, lead and arsenic bound to humic acid molar mass fractions in a contaminated apple orchard. Newton K; Amarasiriwardena D; Xing B Environ Pollut; 2006 Sep; 143(2):197-205. PubMed ID: 16480799 [TBL] [Abstract][Full Text] [Related]
60. Mobility of adsorbed arsenic in two calcareous soils as influenced by water extract of compost. Lin HT; Wang MC; Seshaiah K Chemosphere; 2008 Mar; 71(4):742-9. PubMed ID: 18035393 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]