BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

461 related articles for article (PubMed ID: 19119185)

  • 1. Cytosolic viral sensor RIG-I is a 5'-triphosphate-dependent translocase on double-stranded RNA.
    Myong S; Cui S; Cornish PV; Kirchhofer A; Gack MU; Jung JU; Hopfner KP; Ha T
    Science; 2009 Feb; 323(5917):1070-4. PubMed ID: 19119185
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis of RNA recognition and activation by innate immune receptor RIG-I.
    Jiang F; Ramanathan A; Miller MT; Tang GQ; Gale M; Patel SS; Marcotrigiano J
    Nature; 2011 Sep; 479(7373):423-7. PubMed ID: 21947008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA.
    Kowalinski E; Lunardi T; McCarthy AA; Louber J; Brunel J; Grigorov B; Gerlier D; Cusack S
    Cell; 2011 Oct; 147(2):423-35. PubMed ID: 22000019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ATP-dependent effector-like functions of RIG-I-like receptors.
    Yao H; Dittmann M; Peisley A; Hoffmann HH; Gilmore RH; Schmidt T; Schmidt-Burgk J; Hornung V; Rice CM; Hur S
    Mol Cell; 2015 May; 58(3):541-548. PubMed ID: 25891073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic discrimination of self/non-self RNA by the ATPase activity of RIG-I and MDA5.
    Louber J; Brunel J; Uchikawa E; Cusack S; Gerlier D
    BMC Biol; 2015 Jul; 13():54. PubMed ID: 26215161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solution structures of cytosolic RNA sensor MDA5 and LGP2 C-terminal domains: identification of the RNA recognition loop in RIG-I-like receptors.
    Takahasi K; Kumeta H; Tsuduki N; Narita R; Shigemoto T; Hirai R; Yoneyama M; Horiuchi M; Ogura K; Fujita T; Inagaki F
    J Biol Chem; 2009 Jun; 284(26):17465-74. PubMed ID: 19380577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RIG-I forms signaling-competent filaments in an ATP-dependent, ubiquitin-independent manner.
    Peisley A; Wu B; Yao H; Walz T; Hur S
    Mol Cell; 2013 Sep; 51(5):573-83. PubMed ID: 23993742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5.
    Kato H; Takeuchi O; Mikamo-Satoh E; Hirai R; Kawai T; Matsushita K; Hiiragi A; Dermody TS; Fujita T; Akira S
    J Exp Med; 2008 Jul; 205(7):1601-10. PubMed ID: 18591409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and biochemical studies of RIG-I antiviral signaling.
    Feng M; Ding Z; Xu L; Kong L; Wang W; Jiao S; Shi Z; Greene MI; Cong Y; Zhou Z
    Protein Cell; 2013 Feb; 4(2):142-54. PubMed ID: 23264040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural insights into RNA recognition by RIG-I.
    Luo D; Ding SC; Vela A; Kohlway A; Lindenbach BD; Pyle AM
    Cell; 2011 Oct; 147(2):409-22. PubMed ID: 22000018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensing of viral nucleic acids by RIG-I: from translocation to translation.
    Schmidt A; Rothenfusser S; Hopfner KP
    Eur J Cell Biol; 2012 Jan; 91(1):78-85. PubMed ID: 21496944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cooperative assembly and dynamic disassembly of MDA5 filaments for viral dsRNA recognition.
    Peisley A; Lin C; Wu B; Orme-Johnson M; Liu M; Walz T; Hur S
    Proc Natl Acad Sci U S A; 2011 Dec; 108(52):21010-5. PubMed ID: 22160685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential recognition of double-stranded RNA by RIG-I-like receptors in antiviral immunity.
    Saito T; Gale M
    J Exp Med; 2008 Jul; 205(7):1523-7. PubMed ID: 18591413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RIG-I Uses an ATPase-Powered Translocation-Throttling Mechanism for Kinetic Proofreading of RNAs and Oligomerization.
    Devarkar SC; Schweibenz B; Wang C; Marcotrigiano J; Patel SS
    Mol Cell; 2018 Oct; 72(2):355-368.e4. PubMed ID: 30270105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RIG-I ATPase activity and discrimination of self-RNA versus non-self-RNA.
    Anchisi S; Guerra J; Garcin D
    mBio; 2015 Mar; 6(2):e02349. PubMed ID: 25736886
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RIGorous detection: exposing virus through RNA sensing.
    Rehwinkel J; Reis e Sousa C
    Science; 2010 Jan; 327(5963):284-6. PubMed ID: 20075242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of RIG-I C-terminal domain bound to blunt-ended double-strand RNA without 5' triphosphate.
    Lu C; Ranjith-Kumar CT; Hao L; Kao CC; Li P
    Nucleic Acids Res; 2011 Mar; 39(4):1565-75. PubMed ID: 20961956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recognition of 5' triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus.
    Schlee M; Roth A; Hornung V; Hagmann CA; Wimmenauer V; Barchet W; Coch C; Janke M; Mihailovic A; Wardle G; Juranek S; Kato H; Kawai T; Poeck H; Fitzgerald KA; Takeuchi O; Akira S; Tuschl T; Latz E; Ludwig J; Hartmann G
    Immunity; 2009 Jul; 31(1):25-34. PubMed ID: 19576794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The regulatory domain of the RIG-I family ATPase LGP2 senses double-stranded RNA.
    Pippig DA; Hellmuth JC; Cui S; Kirchhofer A; Lammens K; Lammens A; Schmidt A; Rothenfusser S; Hopfner KP
    Nucleic Acids Res; 2009 Apr; 37(6):2014-25. PubMed ID: 19208642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of length-dependent recognition of viral double-stranded RNA by RIG-I.
    Im JH; Duic I; Yoshimura SH; Onomoto K; Yoneyama M; Kato H; Fujita T
    Sci Rep; 2023 Apr; 13(1):6318. PubMed ID: 37072508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.