BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 19119809)

  • 21. Exciton localization and dissociation dynamics in CdS and CdS-Pt quantum confined nanorods: effect of nonuniform rod diameters.
    Wu K; Rodríguez-Córdoba W; Lian T
    J Phys Chem B; 2014 Dec; 118(49):14062-9. PubMed ID: 24945594
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Light-induced selective deposition of metals on gold-tipped CdSe-seeded CdS nanorods.
    Li X; Lian J; Lin M; Chan Y
    J Am Chem Soc; 2011 Feb; 133(4):672-5. PubMed ID: 21174430
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Elucidation of two giants: challenges to thick-shell synthesis in CdSe/ZnSe and ZnSe/CdS core/shell quantum dots.
    Acharya KP; Nguyen HM; Paulite M; Piryatinski A; Zhang J; Casson JL; Xu H; Htoon H; Hollingsworth JA
    J Am Chem Soc; 2015 Mar; 137(11):3755-8. PubMed ID: 25746140
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microwave-assisted aqueous synthesis: a rapid approach to prepare highly luminescent ZnSe(S) alloyed quantum dots.
    Qian H; Qiu X; Li L; Ren J
    J Phys Chem B; 2006 May; 110(18):9034-40. PubMed ID: 16671712
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fluorescent asymmetrically cobalt-tipped CdSe@CdS core@shell nanorod heterostructures exhibiting room-temperature ferromagnetic behavior.
    Deka S; Falqui A; Bertoni G; Sangregorio C; Poneti G; Morello G; De Giorgi M; Giannini C; Cingolani R; Manna L; Cozzoli PD
    J Am Chem Soc; 2009 Sep; 131(35):12817-28. PubMed ID: 19722722
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Near unity quantum yield of light-driven redox mediator reduction and efficient H2 generation using colloidal nanorod heterostructures.
    Zhu H; Song N; Lv H; Hill CL; Lian T
    J Am Chem Soc; 2012 Jul; 134(28):11701-8. PubMed ID: 22721499
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Beyond band alignment: hole localization driven formation of three spatially separated long-lived exciton states in CdSe/CdS nanorods.
    Wu K; Rodríguez-Córdoba WE; Liu Z; Zhu H; Lian T
    ACS Nano; 2013 Aug; 7(8):7173-85. PubMed ID: 23829512
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Extended photoresponse and multi-band luminescence of ZnO/ZnSe core/shell nanorods.
    Yang Q; Cai H; Hu Z; Duan Z; Yang X; Sun J; Xu N; Wu J
    Nanoscale Res Lett; 2014 Jan; 9(1):31. PubMed ID: 24428949
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanisms for photogeneration and recombination of multiexcitons in semiconductor nanocrystals: implications for lasing and solar energy conversion.
    Klimov VI
    J Phys Chem B; 2006 Aug; 110(34):16827-45. PubMed ID: 16927970
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sensibilization of p-NiO with ZnSe/CdS and CdS/ZnSe quantum dots for photoelectrochemical water reduction.
    Lu C; Drichel A; Chen J; Enders F; Rokicińska A; Kuśtrowski P; Dronskowski R; Boldt K; Slabon A
    Nanoscale; 2021 Jan; 13(2):869-877. PubMed ID: 33355569
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effect of the charge-separating interface on exciton dynamics in photocatalytic colloidal heteronanocrystals.
    O'Connor T; Panov MS; Mereshchenko A; Tarnovsky AN; Lorek R; Perera D; Diederich G; Lambright S; Moroz P; Zamkov M
    ACS Nano; 2012 Sep; 6(9):8156-65. PubMed ID: 22881284
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessment of Hot-Carrier Effects on Charge Separation in Type-II CdS/CdTe Heterostructured Nanorods.
    Okano M; Sakamoto M; Teranishi T; Kanemitsu Y
    J Phys Chem Lett; 2014 Sep; 5(17):2951-6. PubMed ID: 26278242
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improve photo-electron conversion efficiency of ZnO/CdS coaxial nanorods by p-type CdTe coating.
    Jin MJ; Chen XY; Gao ZM; Ling T; Du XW
    Nanotechnology; 2012 Dec; 23(48):485401. PubMed ID: 23124384
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Experimental and mathematical modeling studies of the separation of zinc blende and wurtzite phases of CdS nanorods by density gradient ultracentrifugation.
    Ma X; Kuang Y; Bai L; Chang Z; Wang F; Sun X; Evans DG
    ACS Nano; 2011 Apr; 5(4):3242-9. PubMed ID: 21361333
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Relationships between Exciton Dissociation and Slow Recombination within ZnSe/CdS and CdSe/CdS Dot-in-Rod Heterostructures.
    Grennell AN; Utterback JK; Pearce OM; Wilker MB; Dukovic G
    Nano Lett; 2017 Jun; 17(6):3764-3774. PubMed ID: 28534406
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Growth Control of InP/ZnSe Heterostructured Nanocrystals.
    Shin D; Lee HJ; Jung D; Chae JA; Park JW; Lim J; Im S; Min S; Hwang E; Lee DC; Park YS; Chang JH; Park K; Kim J; Park JS; Bae WK
    Adv Mater; 2024 Feb; ():e2312250. PubMed ID: 38300222
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Solution-based II-VI core/shell nanowire heterostructures.
    Goebl JA; Black RW; Puthussery J; Giblin J; Kosel TH; Kuno M
    J Am Chem Soc; 2008 Nov; 130(44):14822-33. PubMed ID: 18847191
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electronic structures of the CdSe/CdS core-shell nanorods.
    Luo Y; Wang LW
    ACS Nano; 2010 Jan; 4(1):91-8. PubMed ID: 20043692
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Switchable assembly of ultra narrow CdS nanowires and nanorods.
    Acharya S; Patla I; Kost J; Efrima S; Golan Y
    J Am Chem Soc; 2006 Jul; 128(29):9294-5. PubMed ID: 16848440
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Wave function engineering for efficient extraction of up to nineteen electrons from one CdSe/CdS quasi-type II quantum dot.
    Zhu H; Song N; Rodríguez-Córdoba W; Lian T
    J Am Chem Soc; 2012 Mar; 134(9):4250-7. PubMed ID: 22329340
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.