These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 19119809)

  • 41. Microwave synthesis of highly aligned ultra narrow semiconductor rods and wires.
    Panda AB; Glaspell G; El-Shall MS
    J Am Chem Soc; 2006 Mar; 128(9):2790-1. PubMed ID: 16506744
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Infrared-active heterostructured nanocrystals with ultralong carrier lifetimes.
    Lee DC; Robel I; Pietryga JM; Klimov VI
    J Am Chem Soc; 2010 Jul; 132(29):9960-2. PubMed ID: 20593826
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Microwave-assisted growth and characterization of water-dispersed CdTe/CdS core-shell nanocrystals with high photoluminescence.
    He Y; Lu HT; Sai LM; Lai WY; Fan QL; Wang LH; Huang W
    J Phys Chem B; 2006 Jul; 110(27):13370-4. PubMed ID: 16821856
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Unique Ternary Semiconductor-(Semiconductor/Metal) Nano-Architecture for Efficient Photocatalytic Hydrogen Evolution.
    Zhuang TT; Liu Y; Sun M; Jiang SL; Zhang MW; Wang XC; Zhang Q; Jiang J; Yu SH
    Angew Chem Int Ed Engl; 2015 Sep; 54(39):11495-500. PubMed ID: 26276905
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Insight into morphology dependent charge carrier dynamics in ZnSe-CdS nanoheterostructures.
    Mittal M; Dana J; Lübkemann F; Ghosh HN; Bigall NC; Sapra S
    Phys Chem Chem Phys; 2022 Apr; 24(14):8519-8528. PubMed ID: 35348140
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Durian-Shaped CdS@ZnSe Core@Mesoporous-Shell Nanoparticles for Enhanced and Sustainable Photocatalytic Hydrogen Evolution.
    Lian Z; Sakamoto M; Kobayashi Y; Tamai N; Ma J; Sakurai T; Seki S; Nakagawa T; Lai M; Haruta M; Kurata H; Teranishi T
    J Phys Chem Lett; 2018 May; 9(9):2212-2217. PubMed ID: 29642705
    [TBL] [Abstract][Full Text] [Related]  

  • 47. CdS/Cyclohexylamine inorganic-organic hybrid semiconductor nanofibers with strong quantum confinement effect.
    Fan L; Song H; Zhao H; Pan G; Liu L; Dong B; Wang F; Bai X; Qin R; Kong X; Ren X
    J Nanosci Nanotechnol; 2008 Aug; 8(8):3914-20. PubMed ID: 19049150
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enhanced lifetime of excitons in nonepitaxial Au/CdS core/shell nanocrystals.
    Lambright S; Butaeva E; Razgoniaeva N; Hopkins T; Smith B; Perera D; Corbin J; Khon E; Thomas R; Moroz P; Mereshchenko A; Tarnovsky A; Zamkov M
    ACS Nano; 2014 Jan; 8(1):352-61. PubMed ID: 24325605
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Asymmetric dumbbells from selective deposition of metals on seeded semiconductor nanorods.
    Chakrabortty S; Yang JA; Tan YM; Mishra N; Chan Y
    Angew Chem Int Ed Engl; 2010 Apr; 49(16):2888-92. PubMed ID: 20306507
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A two-storey structured photoanode of a 3D Cu2ZnSnS4/CdS/ZnO@steel composite nanostructure for efficient photoelectrochemical hydrogen generation.
    Choi Y; Baek M; Zhang Z; Dao VD; Choi HS; Yong K
    Nanoscale; 2015 Oct; 7(37):15291-9. PubMed ID: 26327311
    [TBL] [Abstract][Full Text] [Related]  

  • 51. CdS/CdSe core-shell nanorod arrays: energy level alignment and enhanced photoelectrochemical performance.
    Wang M; Jiang J; Shi J; Guo L
    ACS Appl Mater Interfaces; 2013 May; 5(10):4021-5. PubMed ID: 23647055
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Influence of chloride ions on the synthesis of colloidal branched CdSe/CdS nanocrystals by seeded growth.
    Kim MR; Miszta K; Povia M; Brescia R; Christodoulou S; Prato M; Marras S; Manna L
    ACS Nano; 2012 Dec; 6(12):11088-96. PubMed ID: 23176381
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Direct determination of polarity, faceting, and core location in colloidal core/shell wurtzite semiconductor nanocrystals.
    Bertoni G; Grillo V; Brescia R; Ke X; Bals S; Catellani A; Li H; Manna L
    ACS Nano; 2012 Jul; 6(7):6453-61. PubMed ID: 22708556
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synthesis of Anisotropic ZnSe Nanorods with Zinc Blende Crystal Structure.
    Ning J; Kershaw SV; Rogach AL
    Angew Chem Int Ed Engl; 2020 Mar; 59(13):5385-5391. PubMed ID: 31960576
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Core-shell nanorods for efficient photoelectrochemical hydrogen production.
    Yu ZG; Pryor CE; Lau WH; Berding MA; MacQueen DB
    J Phys Chem B; 2005 Dec; 109(48):22913-9. PubMed ID: 16853985
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Universal Length Dependence of Rod-to-Seed Exciton Localization Efficiency in Type I and Quasi-Type II CdSe@CdS Nanorods.
    Wu K; Hill LJ; Chen J; McBride JR; Pavlopolous NG; Richey NE; Pyun J; Lian T
    ACS Nano; 2015 Apr; 9(4):4591-9. PubMed ID: 25803834
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Dual emission in asymmetric "giant" PbS/CdS/CdS core/shell/shell quantum dots.
    Zhao H; Sirigu G; Parisini A; Camellini A; Nicotra G; Rosei F; Morandi V; Zavelani-Rossi M; Vomiero A
    Nanoscale; 2016 Feb; 8(7):4217-26. PubMed ID: 26837955
    [TBL] [Abstract][Full Text] [Related]  

  • 58. General shape control of colloidal CdS, CdSe, CdTe quantum rods and quantum rod heterostructures.
    Shieh F; Saunders AE; Korgel BA
    J Phys Chem B; 2005 May; 109(18):8538-42. PubMed ID: 16852005
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Doping semiconductor nanocrystals.
    Erwin SC; Zu L; Haftel MI; Efros AL; Kennedy TA; Norris DJ
    Nature; 2005 Jul; 436(7047):91-4. PubMed ID: 16001066
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Rational Design of Dot-on-Rod Nano-Heterostructure for Photocatalytic CO
    Xin ZK; Gao YJ; Gao Y; Song HW; Zhao J; Fan F; Xia AD; Li XB; Tung CH; Wu LZ
    Adv Mater; 2022 Jan; 34(3):e2106662. PubMed ID: 34695250
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.