These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 19119815)

  • 1. Photoassisted overall water splitting in a visible light-absorbing dye-sensitized photoelectrochemical cell.
    Youngblood WJ; Lee SH; Kobayashi Y; Hernandez-Pagan EA; Hoertz PG; Moore TA; Moore AL; Gust D; Mallouk TE
    J Am Chem Soc; 2009 Jan; 131(3):926-7. PubMed ID: 19119815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visible light water splitting using dye-sensitized oxide semiconductors.
    Youngblood WJ; Lee SH; Maeda K; Mallouk TE
    Acc Chem Res; 2009 Dec; 42(12):1966-73. PubMed ID: 19905000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iodine/iodide-free dye-sensitized solar cells.
    Yanagida S; Yu Y; Manseki K
    Acc Chem Res; 2009 Nov; 42(11):1827-38. PubMed ID: 19877690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile fabrication of an efficient oxynitride TaON photoanode for overall water splitting into H2 and O2 under visible light irradiation.
    Abe R; Higashi M; Domen K
    J Am Chem Soc; 2010 Sep; 132(34):11828-9. PubMed ID: 20443625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dye sensitization of single crystal semiconductor electrodes.
    Spitler MT; Parkinson BA
    Acc Chem Res; 2009 Dec; 42(12):2017-29. PubMed ID: 19924998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A photoelectrochemical device for visible light driven water splitting by a molecular ruthenium catalyst assembled on dye-sensitized nanostructured TiO2.
    Li L; Duan L; Xu Y; Gorlov M; Hagfeldt A; Sun L
    Chem Commun (Camb); 2010 Oct; 46(39):7307-9. PubMed ID: 20686714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrodeless determination of the trap density, decay kinetics, and charge separation efficiency of dye-sensitized nanocrystalline TiO(2).
    Kroeze JE; Savenije TJ; Warman JM
    J Am Chem Soc; 2004 Jun; 126(24):7608-18. PubMed ID: 15198609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SrNbO2N as a water-splitting photoanode with a wide visible-light absorption band.
    Maeda K; Higashi M; Siritanaratkul B; Abe R; Domen K
    J Am Chem Soc; 2011 Aug; 133(32):12334-7. PubMed ID: 21770436
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells.
    Imahori H; Umeyama T; Ito S
    Acc Chem Res; 2009 Nov; 42(11):1809-18. PubMed ID: 19408942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bidentate dicarboxylate capping groups and photosensitizers control the size of IrO2 nanoparticle catalysts for water oxidation.
    Hoertz PG; Kim YI; Youngblood WJ; Mallouk TE
    J Phys Chem B; 2007 Jun; 111(24):6845-56. PubMed ID: 17567097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of the anchoring group in Ru-bipyridyl sensitizers on the photoelectrochemical behavior of dye-sensitized TiO2 electrodes: carboxylate versus phosphonate linkages.
    Park H; Bae E; Lee JJ; Park J; Choi W
    J Phys Chem B; 2006 May; 110(17):8740-9. PubMed ID: 16640430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of the anchoring group (carboxylate vs phosphonate) in Ru-complex-sensitized TiO2 on hydrogen production under visible light.
    Bae E; Choi W
    J Phys Chem B; 2006 Aug; 110(30):14792-9. PubMed ID: 16869588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals.
    Nishimura S; Abrams N; Lewis BA; Halaoui LI; Mallouk TE; Benkstein KD; van de Lagemaat J; Frank AJ
    J Am Chem Soc; 2003 May; 125(20):6306-10. PubMed ID: 12785864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rh-doped SrTiO3 photocatalyst electrode showing cathodic photocurrent for water splitting under visible-light irradiation.
    Iwashina K; Kudo A
    J Am Chem Soc; 2011 Aug; 133(34):13272-5. PubMed ID: 21797261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strongly coupled ruthenium-polypyridyl complexes for efficient electron injection in dye-sensitized semiconductor nanoparticles.
    Ramakrishna G; Jose DA; Kumar DK; Das A; Palit DK; Ghosh HN
    J Phys Chem B; 2005 Aug; 109(32):15445-53. PubMed ID: 16852959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum dot solar cells. harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films.
    Robel I; Subramanian V; Kuno M; Kamat PV
    J Am Chem Soc; 2006 Feb; 128(7):2385-93. PubMed ID: 16478194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CdSe quantum-dot-sensitized solar cell with ∼100% internal quantum efficiency.
    Fuke N; Hoch LB; Koposov AY; Manner VW; Werder DJ; Fukui A; Koide N; Katayama H; Sykora M
    ACS Nano; 2010 Nov; 4(11):6377-86. PubMed ID: 20961101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visible-light-sensitized production of hydrogen using perfluorosulfonate polymer-coated TiO2 nanoparticles: an alternative approach to sensitizer anchoring.
    Park H; Choi W
    Langmuir; 2006 Mar; 22(6):2906-11. PubMed ID: 16519502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dopamine sensitized nanoporous TiO2 film on electrodes: photoelectrochemical sensing of NADH under visible irradiation.
    Wang GL; Xu JJ; Chen HY
    Biosens Bioelectron; 2009 Apr; 24(8):2494-8. PubMed ID: 19185483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visible-light photocurrent response of TiO2-polyheptazine hybrids: evidence for interfacial charge-transfer absorption.
    Bledowski M; Wang L; Ramakrishnan A; Khavryuchenko OV; Khavryuchenko VD; Ricci PC; Strunk J; Cremer T; Kolbeck C; Beranek R
    Phys Chem Chem Phys; 2011 Dec; 13(48):21511-9. PubMed ID: 22057224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.