These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
307 related articles for article (PubMed ID: 19119815)
21. Photodeposition of Ag2S quantum dots and application to photoelectrochemical cells for hydrogen production under simulated sunlight. Nagasuna K; Akita T; Fujishima M; Tada H Langmuir; 2011 Jun; 27(11):7294-300. PubMed ID: 21553826 [TBL] [Abstract][Full Text] [Related]
22. Comparison of low crystallinity TiO2 film with nanocrystalline anatase film for dye-sensitized solar cells. Tang X; Qian J; Wang Z; Wang H; Feng Q; Liu G J Colloid Interface Sci; 2009 Feb; 330(2):386-91. PubMed ID: 19036388 [TBL] [Abstract][Full Text] [Related]
23. Carboxyphenyl metalloporphyrins as photosensitizers of semiconductor film electrodes. A study of the effect of different central metals. Gervaldo M; Fungo F; Durantini EN; Silber JJ; Sereno L; Otero L J Phys Chem B; 2005 Nov; 109(44):20953-62. PubMed ID: 16853716 [TBL] [Abstract][Full Text] [Related]
24. Dye-sensitization of self-assembled titania nanotubes prepared by galvanostatic anodization of Ti sputtered on conductive glass. Stergiopoulos T; Valota A; Likodimos V; Speliotis T; Niarchos D; Skeldon P; Thompson GE; Falaras P Nanotechnology; 2009 Sep; 20(36):365601. PubMed ID: 19687543 [TBL] [Abstract][Full Text] [Related]
25. Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells. Boschloo G; Hagfeldt A Acc Chem Res; 2009 Nov; 42(11):1819-26. PubMed ID: 19845388 [TBL] [Abstract][Full Text] [Related]
26. Metal-free organic sensitizers for use in water-splitting dye-sensitized photoelectrochemical cells. Swierk JR; Méndez-Hernández DD; McCool NS; Liddell P; Terazono Y; Pahk I; Tomlin JJ; Oster NV; Moore TA; Moore AL; Gust D; Mallouk TE Proc Natl Acad Sci U S A; 2015 Feb; 112(6):1681-6. PubMed ID: 25583488 [TBL] [Abstract][Full Text] [Related]
27. Parameters influencing the efficiency of electron injection in dye-sensitized solar cells. Koops SE; O'Regan BC; Barnes PR; Durrant JR J Am Chem Soc; 2009 Apr; 131(13):4808-18. PubMed ID: 19334776 [TBL] [Abstract][Full Text] [Related]
28. Plasmon-induced enhancement in analytical performance based on gold nanoparticles deposited on TiO2 film. Zhu A; Luo Y; Tian Y Anal Chem; 2009 Sep; 81(17):7243-7. PubMed ID: 19655788 [TBL] [Abstract][Full Text] [Related]
29. Quantum-dot-sensitized TiO2 inverse opals for photoelectrochemical hydrogen generation. Cheng C; Karuturi SK; Liu L; Liu J; Li H; Su LT; Tok AI; Fan HJ Small; 2012 Jan; 8(1):37-42. PubMed ID: 22009604 [TBL] [Abstract][Full Text] [Related]
30. Effects of electron trapping and protonation on the efficiency of water-splitting dye-sensitized solar cells. Swierk JR; McCool NS; Saunders TP; Barber GD; Mallouk TE J Am Chem Soc; 2014 Aug; 136(31):10974-82. PubMed ID: 25068176 [TBL] [Abstract][Full Text] [Related]
31. Photoelectrochemical decomposition of water into H2 and O2 on porous BiVO4 thin-film electrodes under visible light and significant effect of Ag ion treatment. Sayama K; Nomura A; Arai T; Sugita T; Abe R; Yanagida M; Oi T; Iwasaki Y; Abe Y; Sugihara H J Phys Chem B; 2006 Jun; 110(23):11352-60. PubMed ID: 16771406 [TBL] [Abstract][Full Text] [Related]
32. Water splitting with silver chloride photoanodes and amorphous silicon solar cells. Currao A; Reddy VR; van Veen MK; Schropp RE; Calzaferri G Photochem Photobiol Sci; 2004; 3(11-12):1017-25. PubMed ID: 15570389 [TBL] [Abstract][Full Text] [Related]
33. Molecular control of recombination dynamics in dye-sensitized nanocrystalline TiO2 films: free energy vs distance dependence. Clifford JN; Palomares E; Nazeeruddin MK; Grätzel M; Nelson J; Li X; Long NJ; Durrant JR J Am Chem Soc; 2004 Apr; 126(16):5225-33. PubMed ID: 15099107 [TBL] [Abstract][Full Text] [Related]
34. Visible photoelectrochemical water splitting into H2 and O2 in a dye-sensitized photoelectrosynthesis cell. Alibabaei L; Sherman BD; Norris MR; Brennaman MK; Meyer TJ Proc Natl Acad Sci U S A; 2015 May; 112(19):5899-902. PubMed ID: 25918426 [TBL] [Abstract][Full Text] [Related]
35. Electron transfer kinetics in water splitting dye-sensitized solar cells based on core-shell oxide electrodes. Lee SH; Zhao Y; Hernandez-Pagan EA; Blasdel L; Youngblood WJ; Mallouk TE Faraday Discuss; 2012; 155():165-76; discussion 207-22. PubMed ID: 22470973 [TBL] [Abstract][Full Text] [Related]
36. Charge separation in a nonfluorescent donor-acceptor dyad derived from boron dipyrromethene dye, leading to photocurrent generation. Hattori S; Ohkubo K; Urano Y; Sunahara H; Nagano T; Wada Y; Tkachenko NV; Lemmetyinen H; Fukuzumi S J Phys Chem B; 2005 Aug; 109(32):15368-75. PubMed ID: 16852949 [TBL] [Abstract][Full Text] [Related]
37. Enhanced efficiency of the visible-light photocatalytic hydrogen generation by the ruthenium tris(2,2'-bipyridyl)-methyl viologen system in the presence of cucurbit[n]urils. Silva CG; de Miguel M; Ferrer B; Alvaro M; García H Photochem Photobiol Sci; 2009 Dec; 8(12):1650-4. PubMed ID: 20024161 [TBL] [Abstract][Full Text] [Related]
38. Built-in quantum dot antennas in dye-sensitized solar cells. Buhbut S; Itzhakov S; Tauber E; Shalom M; Hod I; Geiger T; Garini Y; Oron D; Zaban A ACS Nano; 2010 Mar; 4(3):1293-8. PubMed ID: 20155968 [TBL] [Abstract][Full Text] [Related]
39. Photocatalytic hydrogen generation using a nanocomposite of multi-walled carbon nanotubes and TiO2 nanoparticles under visible light irradiation. Dai K; Peng T; Ke D; Wei B Nanotechnology; 2009 Mar; 20(12):125603. PubMed ID: 19420472 [TBL] [Abstract][Full Text] [Related]
40. Improving the efficiency of water splitting in dye-sensitized solar cells by using a biomimetic electron transfer mediator. Zhao Y; Swierk JR; Megiatto JD; Sherman B; Youngblood WJ; Qin D; Lentz DM; Moore AL; Moore TA; Gust D; Mallouk TE Proc Natl Acad Sci U S A; 2012 Sep; 109(39):15612-6. PubMed ID: 22547794 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]