These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
307 related articles for article (PubMed ID: 19119815)
61. An investigation on electron behavior employing vertically-aligned TiO2 nanotube electrodes for dye-sensitized solar cells. Kang SH; Kim HS; Kim JY; Sung YE Nanotechnology; 2009 Sep; 20(35):355307. PubMed ID: 19671961 [TBL] [Abstract][Full Text] [Related]
63. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Kojima A; Teshima K; Shirai Y; Miyasaka T J Am Chem Soc; 2009 May; 131(17):6050-1. PubMed ID: 19366264 [TBL] [Abstract][Full Text] [Related]
64. Visible light-driven water oxidation with a subporphyrin sensitizer and a water oxidation catalyst. Yamamoto M; Nishizawa Y; Chábera P; Li F; Pascher T; Sundström V; Sun L; Imahori H Chem Commun (Camb); 2016 Nov; 52(94):13702-13705. PubMed ID: 27819083 [TBL] [Abstract][Full Text] [Related]
65. Fabrication of an efficient BaTaO2N photoanode harvesting a wide range of visible light for water splitting. Higashi M; Domen K; Abe R J Am Chem Soc; 2013 Jul; 135(28):10238-41. PubMed ID: 23808352 [TBL] [Abstract][Full Text] [Related]
66. Variable-band-gap poly(arylene ethynylene) conjugated polyelectrolytes adsorbed on nanocrystalline TiO(2): photocurrent efficiency as a function of the band gap. Jiang H; Zhao X; Shelton AH; Lee SH; Reynolds JR; Schanze KS ACS Appl Mater Interfaces; 2009 Feb; 1(2):381-7. PubMed ID: 20353227 [TBL] [Abstract][Full Text] [Related]
67. Charge-transfer mechanism in Pt/KTa(Zr)O(3) photocatalysts modified with porphyrinoids for water splitting. Hagiwara H; Inoue T; Kaneko K; Ishihara T Chemistry; 2009 Nov; 15(46):12862-70. PubMed ID: 19834939 [TBL] [Abstract][Full Text] [Related]
68. Lasting antibacterial activities of Ag-TiO2/Ag/a-TiO2 nanocomposite thin film photocatalysts under solar light irradiation. Akhavan O J Colloid Interface Sci; 2009 Aug; 336(1):117-24. PubMed ID: 19394952 [TBL] [Abstract][Full Text] [Related]
69. Enzyme-assisted reforming of glucose to hydrogen in a photoelectrochemical cell. Hambourger M; Brune A; Gust D; Moore AL; Moore TA Photochem Photobiol; 2005; 81(4):1015-20. PubMed ID: 15960593 [TBL] [Abstract][Full Text] [Related]
70. Preparation and time-gated luminescence bioimaging application of ruthenium complex covalently bound silica nanoparticles. Song C; Ye Z; Wang G; Jin D; Yuan J; Guan Y; Piper J Talanta; 2009 Jun; 79(1):103-8. PubMed ID: 19376351 [TBL] [Abstract][Full Text] [Related]
71. Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells. Gao F; Wang Y; Shi D; Zhang J; Wang M; Jing X; Humphry-Baker R; Wang P; Zakeeruddin SM; Grätzel M J Am Chem Soc; 2008 Aug; 130(32):10720-8. PubMed ID: 18642907 [TBL] [Abstract][Full Text] [Related]
72. Interpretation of apparent activation energies for electron transport in dye-sensitized nanocrystalline solar cells. Peter LM; Walker AB; Boschloo G; Hagfeldt A J Phys Chem B; 2006 Jul; 110(28):13694-9. PubMed ID: 16836312 [TBL] [Abstract][Full Text] [Related]
73. Carbon quantum dots as novel sensitizers for photoelectrochemical solar hydrogen generation and their size-dependent effect. Yu X; Liu R; Zhang G; Cao H Nanotechnology; 2013 Aug; 24(33):335401. PubMed ID: 23892324 [TBL] [Abstract][Full Text] [Related]
75. Ruthenium phthalocyanine-bipyridyl dyads as sensitizers for dye-sensitized solar cells: dye coverage versus molecular efficiency. Rawling T; Austin C; Buchholz F; Colbran SB; McDonagh AM Inorg Chem; 2009 Apr; 48(7):3215-27. PubMed ID: 19278209 [TBL] [Abstract][Full Text] [Related]
76. Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells. Standridge SD; Schatz GC; Hupp JT J Am Chem Soc; 2009 Jun; 131(24):8407-9. PubMed ID: 19473006 [TBL] [Abstract][Full Text] [Related]
77. Modified Ta3N5 powder as a photocatalyst for O2 evolution in a two-step water splitting system with an iodate/iodide shuttle redox mediator under visible light. Tabata M; Maeda K; Higashi M; Lu D; Takata T; Abe R; Domen K Langmuir; 2010 Jun; 26(12):9161-5. PubMed ID: 20527825 [TBL] [Abstract][Full Text] [Related]
78. Direct detection of a transient oxenium ion in water generated by laser flash photolysis. Wang YT; Wang J; Platz MS; Novak M J Am Chem Soc; 2007 Nov; 129(47):14566-7. PubMed ID: 17985908 [TBL] [Abstract][Full Text] [Related]
79. Plasmon-resonance-based generation of cathodic photocurrent at electrodeposited gold nanoparticles coated with TiO2 films. Sakai N; Fujiwara Y; Takahashi Y; Tatsuma T Chemphyschem; 2009 Mar; 10(5):766-9. PubMed ID: 19222041 [TBL] [Abstract][Full Text] [Related]
80. Layered double hydroxides as highly efficient photocatalysts for visible light oxygen generation from water. Gomes Silva C; Bouizi Y; Fornés V; García H J Am Chem Soc; 2009 Sep; 131(38):13833-9. PubMed ID: 19725513 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]