These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 19119833)

  • 1. New wearable system for step-counting telemonitoring and telerehabilitation based on the Codivilla spring.
    Giansanti D; Tiberi Y; Silvestri G; Maccioni G
    Telemed J E Health; 2008 Dec; 14(10):1096-100. PubMed ID: 19119833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New wearable system for the step counting based on the codivilla-spring for daily activity monitoring in stroke rehabilitation.
    Giansanti D; Tiberi Y; Maccioni G
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4720-3. PubMed ID: 19163770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward the integration of novel wearable step-counters in gait telerehabilitation after stroke.
    Giansanti D; Tiberi Y; Silvestri G; Maccioni G
    Telemed J E Health; 2009 Jan; 15(1):105-11. PubMed ID: 19199855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Telemonitoring and telerehabilitation of patients with Parkinson's disease: health technology assessment of a novel wearable step counter.
    Giansanti D; Macellari V; Maccioni G
    Telemed J E Health; 2008; 14(1):76-83. PubMed ID: 18328028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel, user-friendly step counter for home telemonitoring of physical activity.
    Giansanti D; Maccioni G; Macellari V; Mattei E; Triventi M; Censi F; Calcagnini G; Bartolini P
    J Telemed Telecare; 2008; 14(7):345-8. PubMed ID: 18852314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and construction of step counters for disable people: preliminary experience at the Italian Institute of Health.
    Maccioni G; Macellari V; Giansanti D
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4927-9. PubMed ID: 18003111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time gait event detection using wearable sensors.
    Hanlon M; Anderson R
    Gait Posture; 2009 Nov; 30(4):523-7. PubMed ID: 19729307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design, construction and validation of a portable care system for the daily telerehabiliatation of gait.
    Giansanti D; Morelli S; Maccioni G; Brocco M
    Comput Methods Programs Biomed; 2013 Oct; 112(1):146-55. PubMed ID: 23891239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in wearable technology for rehabilitation.
    Bonato P
    Stud Health Technol Inform; 2009; 145():145-59. PubMed ID: 19592792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of sensorized garments as a flexible support to self-administered post-stroke physical rehabilitation.
    Giorgino T; Tormene P; Maggioni G; Capozzi D; Quaglini S; Pistarini C
    Eur J Phys Rehabil Med; 2009 Mar; 45(1):75-84. PubMed ID: 19293756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SQUID: sensorized shirt with smartphone interface for exercise monitoring and home rehabilitation.
    Farjadian AB; Sivak ML; Mavroidis C
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650451. PubMed ID: 24187268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gait rehabilitation: a new biofeedback device for monitoring and enhancing weight-bearing over the affected lower limb.
    Isakov E
    Eura Medicophys; 2007 Mar; 43(1):21-6. PubMed ID: 17021589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of force-sensing resistors for gait event detection to trigger electrical stimulation to improve walking in the child with cerebral palsy.
    Smith BT; Coiro DJ; Finson R; Betz RR; McCarthy J
    IEEE Trans Neural Syst Rehabil Eng; 2002 Mar; 10(1):22-9. PubMed ID: 12173736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inertial Gait Phase Detection for control of a drop foot stimulator Inertial sensing for gait phase detection.
    Kotiadis D; Hermens HJ; Veltink PH
    Med Eng Phys; 2010 May; 32(4):287-97. PubMed ID: 20153237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Development of a wearable electrocardiogram monitor with recognition of physical activity scene].
    Wang Z; Wu B; Yin J; Gong Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Oct; 29(5):941-7. PubMed ID: 23198439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward the design of a wearable system for the remote monitoring of epileptic crisis.
    Giansanti D; Ricci G; Maccioni G
    Telemed J E Health; 2008 Dec; 14(10):1130-5. PubMed ID: 19119837
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of Remote Real-Time Monitoring and Biofeedback System to Connect Patients and Clinicians During Orthopaedic Rehabilitation.
    Kambampati H; Palla F; Introzzi M
    Stud Health Technol Inform; 2023 Oct; 309():181-182. PubMed ID: 37869837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The use of a robot-assisted Gait Trainer GT1 in patients in the acute period of cerebral stroke: a pilot study].
    Skvortsova VI; Ivanova GE; Kovrazhkina EA; Rumiantseva NA; Staritsyn AN; Suvorov AIu; Sogomonian EK
    Zh Nevrol Psikhiatr Im S S Korsakova; 2008; Suppl 23():28-34. PubMed ID: 19425367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electromyographic audio biofeedback for telerehabilitation in hospital.
    Rogante M; Silvestri S; Grigioni M; Zampolini M
    J Telemed Telecare; 2010; 16(4):204-6. PubMed ID: 20511576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Design of Wearable Telerehabilitation Device Based on Micro-sensors].
    Meng L; Du T; Fan J; Qu Y
    Zhongguo Yi Liao Qi Xie Za Zhi; 2017 May; 41(3):189-192. PubMed ID: 29862765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.