BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 1912008)

  • 1. Self-organized control of bipedal locomotion by neural oscillators in unpredictable environment.
    Taga G; Yamaguchi Y; Shimizu H
    Biol Cybern; 1991; 65(3):147-59. PubMed ID: 1912008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A model of the neuro-musculo-skeletal system for human locomotion. I. Emergence of basic gait.
    Taga G
    Biol Cybern; 1995 Jul; 73(2):97-111. PubMed ID: 7662771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A model of the neuro-musculo-skeletal system for human locomotion. II Real-time adaptability under various constraints.
    Taga G
    Biol Cybern; 1995 Jul; 73(2):113-21. PubMed ID: 7662764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emergence of adaptability to time delay in bipedal locomotion.
    Ohgane K; Ei S; Kazutoshi K; Ohtsuki T
    Biol Cybern; 2004 Feb; 90(2):125-32. PubMed ID: 14999479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A mathematical model of adaptive behavior in quadruped locomotion.
    Ito S; Yuasa H; Luo ZW; Ito M; Yanagihara D
    Biol Cybern; 1998 May; 78(5):337-47. PubMed ID: 9691263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A model of the neuro-musculo-skeletal system for anticipatory adjustment of human locomotion during obstacle avoidance.
    Taga G
    Biol Cybern; 1998 Jan; 78(1):9-17. PubMed ID: 9485584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hysteresis in the metachronal-tripod gait transition of insects: a modeling study.
    Fujiki S; Aoi S; Funato T; Tomita N; Senda K; Tsuchiya K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012717. PubMed ID: 23944500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Introduction to focus issue: bipedal locomotion--from robots to humans.
    Milton JG
    Chaos; 2009 Jun; 19(2):026101. PubMed ID: 19566261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Walking is not like reaching: evidence from periodic mechanical perturbations.
    Ahn J; Hogan N
    PLoS One; 2012; 7(3):e31767. PubMed ID: 22479311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of the gait generation principle by a simulated quadruped model with a CPG incorporating vestibular modulation.
    Fukuoka Y; Habu Y; Fukui T
    Biol Cybern; 2013 Dec; 107(6):695-710. PubMed ID: 24132783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling of a bipedal robot using mutually coupled Rayleigh oscillators.
    Filho AC; Dutra MS; Raptopoulos LS
    Biol Cybern; 2005 Jan; 92(1):1-7. PubMed ID: 15580522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A model of neuro-musculo-skeletal system for human locomotion under position constraint condition.
    Ni J; Hiramatsu S; Kato A
    J Biomech Eng; 2003 Aug; 125(4):499-506. PubMed ID: 12968574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical analysis of the development of human bipedal walking by a neuro-musculo-skeletal model.
    Yamazaki N; Hase K; Ogihara N; Hayamizu N
    Folia Primatol (Basel); 1996; 66(1-4):253-71. PubMed ID: 8953764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bipedal robotic walking control derived from analysis of human locomotion.
    Meng L; Macleod CA; Porr B; Gollee H
    Biol Cybern; 2018 Jun; 112(3):277-290. PubMed ID: 29399713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expected and unexpected head yaw movements result in different modifications of gait and whole body coordination strategies.
    Vallis LA; Patla AE
    Exp Brain Res; 2004 Jul; 157(1):94-110. PubMed ID: 15146304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuromusculoskeletal computer modeling and simulation of upright, straight-legged, bipedal locomotion of Australopithecus afarensis (A.L. 288-1).
    Nagano A; Umberger BR; Marzke MW; Gerritsen KG
    Am J Phys Anthropol; 2005 Jan; 126(1):2-13. PubMed ID: 15386246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Explanatory limitations of the HKB model: incentives for a two-tiered model of rhythmic interlimb coordination.
    Peper CL; Ridderikhoff A; Daffertshofer A; Beek PJ
    Hum Mov Sci; 2004 Nov; 23(5):673-97. PubMed ID: 15589628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling of a bipedal locomotor using coupled nonlinear oscillators of Van der Pol.
    Dutra MS; De Pina Filho AC; Romano VF
    Biol Cybern; 2003 Apr; 88(4):286-92. PubMed ID: 12690487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hysteresis in the gait transition of a quadruped investigated using simple body mechanical and oscillator network models.
    Aoi S; Yamashita T; Tsuchiya K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061909. PubMed ID: 21797405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. All common bipedal gaits emerge from a single passive model.
    Gan Z; Yesilevskiy Y; Zaytsev P; Remy CD
    J R Soc Interface; 2018 Sep; 15(146):. PubMed ID: 30257925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.