BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 1912008)

  • 21. Motion adaptation with motor invariant theory.
    Liu F; Southern R; Guo S; Yang X; Zhang JJ
    IEEE Trans Cybern; 2013 Jun; 43(3):1131-45. PubMed ID: 23193243
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of phase shifts of sensory inputs in walking revealed by means of phase reduction.
    Yeldesbay A; Tóth T; Daun S
    J Comput Neurosci; 2018 Jun; 44(3):313-339. PubMed ID: 29589252
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A physical model of sensorimotor interactions during locomotion.
    Klein TJ; Lewis MA
    J Neural Eng; 2012 Aug; 9(4):046011. PubMed ID: 22766556
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rate-dependent control strategies stabilize limb forces during human locomotion.
    Yen JT; Chang YH
    J R Soc Interface; 2010 May; 7(46):801-10. PubMed ID: 19828502
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spiking neural state machine for gait frequency entrainment in a flexible modular robot.
    Spaeth A; Tebyani M; Haussler D; Teodorescu M
    PLoS One; 2020; 15(10):e0240267. PubMed ID: 33085673
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A simple state-determined model reproduces entrainment and phase-locking of human walking.
    Ahn J; Hogan N
    PLoS One; 2012; 7(11):e47963. PubMed ID: 23152761
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nonlinear dynamical model of human gait.
    West BJ; Scafetta N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 1):051917. PubMed ID: 12786188
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of body movement on yaw motion in bipedal running lizard by dynamic simulation.
    Kim J; Kim H; Park J; Kim HS; Seo T
    PLoS One; 2020; 15(12):e0243798. PubMed ID: 33382751
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Templates and anchors: neuromechanical hypotheses of legged locomotion on land.
    Full RJ; Koditschek DE
    J Exp Biol; 1999 Dec; 202(Pt 23):3325-32. PubMed ID: 10562515
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Resonance tuning in a neuro-musculo-skeletal model of the forearm.
    Verdaasdonk BW; Koopman HF; Van der Helm FC
    Biol Cybern; 2007 Feb; 96(2):165-80. PubMed ID: 17077977
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electromyographic identification of spinal oscillator patterns and recouplings in a patient with incomplete spinal cord lesion: oscillator formation training as a method to improve motor activities.
    Schalow G; Blanc Y; Jeltsch W; Zäch GA
    Gen Physiol Biophys; 1996 Aug; 15 Suppl 1():121-220. PubMed ID: 8934200
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The functional importance of human foot muscles for bipedal locomotion.
    Farris DJ; Kelly LA; Cresswell AG; Lichtwark GA
    Proc Natl Acad Sci U S A; 2019 Jan; 116(5):1645-1650. PubMed ID: 30655349
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Patterned control of human locomotion.
    Lacquaniti F; Ivanenko YP; Zago M
    J Physiol; 2012 May; 590(10):2189-99. PubMed ID: 22411012
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Theories of bipedal walking: an odyssey.
    Vaughan CL
    J Biomech; 2003 Apr; 36(4):513-23. PubMed ID: 12600342
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinematic control of walking.
    Lacquaniti F; Ivanenko YP; Zago M
    Arch Ital Biol; 2002 Oct; 140(4):263-72. PubMed ID: 12228979
    [TBL] [Abstract][Full Text] [Related]  

  • 36. New method of three-dimensional analysis of bipedal locomotion for the study of displacements of the body and body-parts centers of mass in man and non-human primates: evolutionary framework.
    Tardieu C; Aurengo A; Tardieu B
    Am J Phys Anthropol; 1993 Apr; 90(4):455-76. PubMed ID: 8476004
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimal regulation of bipedal walking speed despite an unexpected bump in the road.
    Darici O; Temeltas H; Kuo AD
    PLoS One; 2018; 13(9):e0204205. PubMed ID: 30256825
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A hierarchical neural-network model for control and learning of voluntary movement.
    Kawato M; Furukawa K; Suzuki R
    Biol Cybern; 1987; 57(3):169-85. PubMed ID: 3676355
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Instability-induced hierarchy in bipedal locomotion.
    Ohgane K; Ueda K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 1):051915. PubMed ID: 18643110
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Formal analysis of resonance entrainment by central pattern generator.
    Futakata Y; Iwasaki T
    J Math Biol; 2008 Aug; 57(2):183-207. PubMed ID: 18175118
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.