BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

393 related articles for article (PubMed ID: 19120465)

  • 1. Quantitative analysis of cellulose degradation and growth of cellulolytic bacteria in the rumen.
    Russell JB; Muck RE; Weimer PJ
    FEMS Microbiol Ecol; 2009 Feb; 67(2):183-97. PubMed ID: 19120465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Why don't ruminal bacteria digest cellulose faster?
    Weimer PJ
    J Dairy Sci; 1996 Aug; 79(8):1496-502. PubMed ID: 8880475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Initial pH as a determinant of cellulose digestion rate by mixed ruminal microorganisms in vitro.
    MouriƱo F; Akkarawongsa R; Weimer PJ
    J Dairy Sci; 2001 Apr; 84(4):848-59. PubMed ID: 11352162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Why are ruminal cellulolytic bacteria unable to digest cellulose at low pH?
    Russell JB; Wilson DB
    J Dairy Sci; 1996 Aug; 79(8):1503-9. PubMed ID: 8880476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Interrelationship between populations of cellulolytic microorganisms during digestion of cellular tissue by rumen contents].
    Laptev GIu
    Prikl Biokhim Mikrobiol; 1995; 31(4):441-6. PubMed ID: 7479636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dietary fiber components: relationship to the rate and extent of ruminal digestion.
    Mertens DR
    Fed Proc; 1977 Feb; 36(2):187-92. PubMed ID: 557000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in rumen microbial ecology and metabolism: potential impact on nutrient output.
    Mackie RI; White BA
    J Dairy Sci; 1990 Oct; 73(10):2971-95. PubMed ID: 2178174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of ruminal cellulolytic bacterial concentrations on in situ digestion of forage cellulose.
    Dehority BA; Tirabasso PA
    J Anim Sci; 1998 Nov; 76(11):2905-11. PubMed ID: 9856401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of in sacco fiber-attachment of representative ruminal cellulolytic bacteria monitored by competitive PCR.
    Koike S; Pan J; Kobayashi Y; Tanaka K
    J Dairy Sci; 2003 Apr; 86(4):1429-35. PubMed ID: 12741567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ionized calcium requirement of rumen cellulolytic bacteria.
    Morales MS; Dehority BA
    J Dairy Sci; 2009 Oct; 92(10):5079-91. PubMed ID: 19762826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved animal production by genetic engineering of ruminal bacteria.
    Brooker JD; Thomson AM; Ward H
    Australas Biotechnol; 1992 Oct; 2(5):288-91. PubMed ID: 1368926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Invited review: adhesion mechanisms of rumen cellulolytic bacteria.
    Miron J; Ben-Ghedalia D; Morrison M
    J Dairy Sci; 2001 Jun; 84(6):1294-309. PubMed ID: 11417686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prospects for development and use of recombinant deoxyribonucleic acid techniques with ruminal bacteria.
    Smith CJ; Hespell RB
    J Dairy Sci; 1983 Jul; 66(7):1536-46. PubMed ID: 6350393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rumen metabolism.
    Baldwin RL; Allison MJ
    J Anim Sci; 1983 Jul; 57 Suppl 2():461-77. PubMed ID: 6352592
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The endogenous polysaccharide utilization rate of mixed ruminal bacteria and the effect of energy starvation on ruminal fermentation rates.
    Van Kessel JS; Russell JB
    J Dairy Sci; 1997 Oct; 80(10):2442-8. PubMed ID: 9361216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of rumen protozoa in the digestion of food cellulosic materials.
    Jouany JP; Senaud J
    Ann Rech Vet; 1979; 10(2-3):261-3. PubMed ID: 119468
    [No Abstract]   [Full Text] [Related]  

  • 17. Lessons from the cow: what the ruminant animal can teach us about consolidated bioprocessing of cellulosic biomass.
    Weimer PJ; Russell JB; Muck RE
    Bioresour Technol; 2009 Nov; 100(21):5323-31. PubMed ID: 19560344
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of beta-carotene and alpha-tocopherol on rumen bacteria in the utilization of long-chain fatty acids and cellulose.
    Hino T; Andoh N; Ohgi H
    J Dairy Sci; 1993 Feb; 76(2):600-5. PubMed ID: 8445103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Tween 60 and Tween 80 on protease activity, thiol group reactivity, protein adsorption, and cellulose degradation by rumen microbial enzymes.
    Kamande GM; Baah J; Cheng KJ; McAllister TA; Shelford JA
    J Dairy Sci; 2000 Mar; 83(3):536-42. PubMed ID: 10750112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fermentation of cellodextrins by cellulolytic and noncellulolytic rumen bacteria.
    Russell JB
    Appl Environ Microbiol; 1985 Mar; 49(3):572-6. PubMed ID: 3994365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.