BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 19120972)

  • 41. The molecular understanding of osteoclast differentiation.
    Asagiri M; Takayanagi H
    Bone; 2007 Feb; 40(2):251-64. PubMed ID: 17098490
    [TBL] [Abstract][Full Text] [Related]  

  • 42. B-1 lymphocytes differentiate into functional osteoclast-like cells.
    Pugliese LS; Gonçalves TO; Popi AF; Mariano M; Pesquero JB; Lopes JD
    Immunobiology; 2012 Mar; 217(3):336-44. PubMed ID: 21855167
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Amelogenin is a negative regulator of osteoclastogenesis via downregulation of RANKL, M-CSF and fibronectin expression in osteoblasts.
    Nishiguchi M; Yuasa K; Saito K; Fukumoto E; Yamada A; Hasegawa T; Yoshizaki K; Kamasaki Y; Nonaka K; Fujiwara T; Fukumoto S
    Arch Oral Biol; 2007 Mar; 52(3):237-43. PubMed ID: 17101114
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Does TNF have anti-osteoclastogenic actions?
    Iqbal J
    Ann N Y Acad Sci; 2006 Apr; 1068():234-9. PubMed ID: 16831923
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Osteoclast formation is strongly reduced both in vivo and in vitro in the absence of CD47/SIRPalpha-interaction.
    Lundberg P; Koskinen C; Baldock PA; Löthgren H; Stenberg A; Lerner UH; Oldenborg PA
    Biochem Biophys Res Commun; 2007 Jan; 352(2):444-8. PubMed ID: 17126807
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Osteoclast development from hematopoietic stem cells: apparent divergence of the osteoclast lineage prior to macrophage commitment.
    Hayase Y; Muguruma Y; Lee MY
    Exp Hematol; 1997 Jan; 25(1):19-25. PubMed ID: 8989902
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Effects of M-CSF concentration, RANKL concentration and M-CSF preinduction on osteoclastogenesis].
    Dong W; Yu J; Qi M; Bai Y; Liang R; Chen H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Dec; 27(6):1336-40. PubMed ID: 21374990
    [TBL] [Abstract][Full Text] [Related]  

  • 48. LTB4 can stimulate human osteoclast differentiation dependent of RANKL.
    Chen ZK; Lv HS; Jiang J
    Artif Cells Blood Substit Immobil Biotechnol; 2010; 38(1):52-6. PubMed ID: 20047521
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Involvement of ADAM9 in multinucleated giant cell formation of blood monocytes.
    Namba K; Nishio M; Mori K; Miyamoto N; Tsurudome M; Ito M; Kawano M; Uchida A; Ito Y
    Cell Immunol; 2001 Nov; 213(2):104-13. PubMed ID: 11831872
    [TBL] [Abstract][Full Text] [Related]  

  • 50. alphavbeta3 and macrophage colony-stimulating factor: partners in osteoclast biology.
    Ross FP; Teitelbaum SL
    Immunol Rev; 2005 Dec; 208():88-105. PubMed ID: 16313343
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Inhibitory effect of (-)-saucerneol on osteoclast differentiation and bone pit formation.
    Kim SN; Kim MH; Kim YS; Ryu SY; Min YK; Kim SH
    Phytother Res; 2009 Feb; 23(2):185-91. PubMed ID: 18690659
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Coculture of osteoclast precursors with rheumatoid synovial fibroblasts induces osteoclastogenesis via transforming growth factor beta-mediated down-regulation of osteoprotegerin.
    Hase H; Kanno Y; Kojima H; Sakurai D; Kobata T
    Arthritis Rheum; 2008 Nov; 58(11):3356-65. PubMed ID: 18975335
    [TBL] [Abstract][Full Text] [Related]  

  • 53. GM-CSF cannot substitute for M-CSF in human osteoclastogenesis.
    Hodge JM; Kirkland MA; Nicholson GC
    Biochem Biophys Res Commun; 2004 Aug; 321(1):7-12. PubMed ID: 15358207
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Signaling axis in osteoclast biology and therapeutic targeting in the RANKL/RANK/OPG system.
    Tanaka S
    Am J Nephrol; 2007; 27(5):466-78. PubMed ID: 17652963
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of vascular endothelial growth factor on RANK gene expression in osteoclast precursors and on osteoclastogenesis.
    Yao S; Liu D; Pan F; Wise GE
    Arch Oral Biol; 2006 Jul; 51(7):596-602. PubMed ID: 16443190
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Osteoclast culture and resorption assays.
    Bradley EW; Oursler MJ
    Methods Mol Biol; 2008; 455():19-35. PubMed ID: 18463808
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Compressive force induces osteoclast differentiation via prostaglandin E(2) production in MC3T3-E1 cells.
    Sanuki R; Shionome C; Kuwabara A; Mitsui N; Koyama Y; Suzuki N; Zhang F; Shimizu N; Maeno M
    Connect Tissue Res; 2010 Apr; 51(2):150-8. PubMed ID: 20001844
    [TBL] [Abstract][Full Text] [Related]  

  • 58. AP-1 stimulates the cathepsin K promoter in RAW 264.7 cells.
    Pang M; Martinez AF; Fernandez I; Balkan W; Troen BR
    Gene; 2007 Nov; 403(1-2):151-8. PubMed ID: 17897792
    [TBL] [Abstract][Full Text] [Related]  

  • 59. RANKL-stimulated TNFalpha production in osteoclast precursor cells promotes osteoclastogenesis by modulating RANK signaling pathways.
    Nakao A; Fukushima H; Kajiya H; Ozeki S; Okabe K
    Biochem Biophys Res Commun; 2007 Jun; 357(4):945-50. PubMed ID: 17467668
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Increased osteoclast formation and activity by peripheral blood mononuclear cells in chronic liver disease patients with osteopenia.
    Olivier BJ; Schoenmaker T; Mebius RE; Everts V; Mulder CJ; van Nieuwkerk KM; de Vries TJ; van der Merwe SW
    Hepatology; 2008 Jan; 47(1):259-67. PubMed ID: 18022900
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.