These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 19121037)
21. Hydroxyquinoline derived vanadium(IV and V) and copper(II) complexes as potential anti-tuberculosis and anti-tumor agents. Correia I; Adão P; Roy S; Wahba M; Matos C; Maurya MR; Marques F; Pavan FR; Leite CQF; Avecilla F; Costa Pessoa J J Inorg Biochem; 2014 Dec; 141():83-93. PubMed ID: 25226436 [TBL] [Abstract][Full Text] [Related]
22. Structural analysis of the phytophagous insect guilds associated with the roots of Centaurea maculosa Lam. C. diffusa Lam., and C. vallesiaca Jordan in Europe: : I. Field observations. Müller H Oecologia; 1989 Jan; 78(1):41-52. PubMed ID: 28311900 [TBL] [Abstract][Full Text] [Related]
23. Catechin secretion and phytotoxicity: Fact not fiction. Bais HP; Kaushik S Commun Integr Biol; 2010 Sep; 3(5):468-70. PubMed ID: 21057643 [TBL] [Abstract][Full Text] [Related]
24. Mobilization and acquisition of sparingly soluble P-Sources by Brassica cultivars under P-starved environment II. Rhizospheric pH changes, redesigned root architecture and pi-uptake kinetics. Akhtar MS; Oki Y; Adachi T J Integr Plant Biol; 2009 Nov; 51(11):1024-39. PubMed ID: 19903224 [TBL] [Abstract][Full Text] [Related]
25. Influence of NaCl and mannitol on peroxidase activity and lipid peroxidation in Centaurea ragusina L. roots and shoots. Radić S; Radić-Stojković M; Pevalek-Kozlina B J Plant Physiol; 2006 Dec; 163(12):1284-92. PubMed ID: 17126732 [TBL] [Abstract][Full Text] [Related]
26. Flavins secreted by roots of iron-deficient Beta vulgaris enable mining of ferric oxide via reductive mechanisms. Sisó-Terraza P; Rios JJ; Abadía J; Abadía A; Álvarez-Fernández A New Phytol; 2016 Jan; 209(2):733-45. PubMed ID: 26351005 [TBL] [Abstract][Full Text] [Related]
27. Ecology. Plant invader may use chemical weapons. Jensen MN Science; 2000 Oct; 290(5491):421-2. PubMed ID: 11183749 [TBL] [Abstract][Full Text] [Related]
28. Can plant biochemistry contribute to understanding of invasion ecology? Inderjit ; Callaway RM; Vivanco JM Trends Plant Sci; 2006 Dec; 11(12):574-80. PubMed ID: 17092763 [TBL] [Abstract][Full Text] [Related]
29. Bioavailability of allelochemicals as affected by companion compounds in soil matrices. Tharayil N; Bhowmik PC; Xing B J Agric Food Chem; 2008 May; 56(10):3706-13. PubMed ID: 18435537 [TBL] [Abstract][Full Text] [Related]
30. Response-based selection of barley cultivars and legume species for complementarity: Root morphology and exudation in relation to nutrient source. Giles CD; Brown LK; Adu MO; Mezeli MM; Sandral GA; Simpson RJ; Wendler R; Shand CA; Menezes-Blackburn D; Darch T; Stutter MI; Lumsdon DG; Zhang H; Blackwell MS; Wearing C; Cooper P; Haygarth PM; George TS Plant Sci; 2017 Feb; 255():12-28. PubMed ID: 28131338 [TBL] [Abstract][Full Text] [Related]
31. Paenibacillus polymyxa BFKC01 enhances plant iron absorption via improved root systems and activated iron acquisition mechanisms. Zhou C; Guo J; Zhu L; Xiao X; Xie Y; Zhu J; Ma Z; Wang J Plant Physiol Biochem; 2016 Aug; 105():162-173. PubMed ID: 27105423 [TBL] [Abstract][Full Text] [Related]
32. Effects of intracellular iron overload on cell death and identification of potent cell death inhibitors. Fang S; Yu X; Ding H; Han J; Feng J Biochem Biophys Res Commun; 2018 Sep; 503(1):297-303. PubMed ID: 29890135 [TBL] [Abstract][Full Text] [Related]
33. Adaptive strategies of Parietaria diffusa (M.&K.) to calcareous habitat with limited iron availability. Donnini S; De Nisi P; Gabotti D; Tato L; Zocchi G Plant Cell Environ; 2012 Jun; 35(6):1171-84. PubMed ID: 22229865 [TBL] [Abstract][Full Text] [Related]
34. Effects of Fe-deficient conditions on Fe uptake and utilization in P-efficient soybean. Qiu W; Dai J; Wang N; Guo X; Zhang X; Zuo Y Plant Physiol Biochem; 2017 Mar; 112():1-8. PubMed ID: 28012287 [TBL] [Abstract][Full Text] [Related]
36. Zinc oxide (ZnO) nanoparticles elevated iron and copper contents and mitigated the bioavailability of lead and cadmium in different leafy greens. Sharifan H; Moore J; Ma X Ecotoxicol Environ Saf; 2020 Mar; 191():110177. PubMed ID: 31958627 [TBL] [Abstract][Full Text] [Related]
37. Fine regulation of leaf iron use efficiency and iron root uptake under limited iron bioavailability. García-Mina JM; Bacaicoa E; Fuentes M; Casanova E Plant Sci; 2013 Jan; 198():39-45. PubMed ID: 23199685 [TBL] [Abstract][Full Text] [Related]
38. The Adaptive Mechanism of Plants to Iron Deficiency via Iron Uptake, Transport, and Homeostasis. Zhang X; Zhang D; Sun W; Wang T Int J Mol Sci; 2019 May; 20(10):. PubMed ID: 31100819 [TBL] [Abstract][Full Text] [Related]
39. Ecophysiological responses to excess iron in lowland and upland rice cultivars. Müller C; Silveira SFDS; Daloso DM; Mendes GC; Merchant A; Kuki KN; Oliva MA; Loureiro ME; Almeida AM Chemosphere; 2017 Dec; 189():123-133. PubMed ID: 28934652 [TBL] [Abstract][Full Text] [Related]
40. The expression of heterologous Fe (III) phytosiderophore transporter HvYS1 in rice increases Fe uptake, translocation and seed loading and excludes heavy metals by selective Fe transport. Banakar R; Alvarez Fernández Á; Abadía J; Capell T; Christou P Plant Biotechnol J; 2017 Apr; 15(4):423-432. PubMed ID: 27633505 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]