BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1204 related articles for article (PubMed ID: 19122669)

  • 1. A genetically encoded fluorescent reporter of ATP:ADP ratio.
    Berg J; Hung YP; Yellen G
    Nat Methods; 2009 Feb; 6(2):161-6. PubMed ID: 19122669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of Osmotic Shock-Induced Extracellular Nucleotide Release with a Genetically Encoded Fluorescent Sensor of ADP and ATP.
    Trull KJ; Miller P; Tat K; Varney SA; Conley JM; Tantama M
    Sensors (Basel); 2019 Jul; 19(15):. PubMed ID: 31344821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imaging energy status in live cells with a fluorescent biosensor of the intracellular ATP-to-ADP ratio.
    Tantama M; Martínez-François JR; Mongeon R; Yellen G
    Nat Commun; 2013; 4():2550. PubMed ID: 24096541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of genetically encoded sensors to monitor cytosolic ATP/ADP ratio in living cells.
    Tarasov AI; Rutter GA
    Methods Enzymol; 2014; 542():289-311. PubMed ID: 24862272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging changes in the cytosolic ATP-to-ADP ratio.
    Tantama M; Yellen G
    Methods Enzymol; 2014; 547():355-71. PubMed ID: 25416365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly selective dual sensing of ATP and ADP using fluorescent ribonucleopeptide sensors.
    Nakano S; Shimizu M; Dinh H; Morii T
    Chem Commun (Camb); 2019 Jan; 55(11):1611-1614. PubMed ID: 30657140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a range of fluorescent reagentless biosensors for ATP, based on malonyl-coenzyme A synthetase.
    Vancraenenbroeck R; Kunzelmann S; Webb MR
    PLoS One; 2017; 12(6):e0179547. PubMed ID: 28636641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescent sensing and discrimination of ATP and ADP based on a unique sandwich assembly of pyrene-adenine-pyrene.
    Xu Z; Spring DR; Yoon J
    Chem Asian J; 2011 Aug; 6(8):2114-22. PubMed ID: 21506284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A fluorescent, reagentless biosensor for ADP based on tetramethylrhodamine-labeled ParM.
    Kunzelmann S; Webb MR
    ACS Chem Biol; 2010 Apr; 5(4):415-25. PubMed ID: 20158267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. When is weaker better? Design of an ADP sensor with weak ADP affinity, but still selective against ATP.
    Hackney DD
    ACS Chem Biol; 2010 Apr; 5(4):353-4. PubMed ID: 20394442
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Fluorescent, Reagentless Biosensor for ATP, Based on Malonyl-Coenzyme A Synthetase.
    Vancraenenbroeck R; Webb MR
    ACS Chem Biol; 2015 Nov; 10(11):2650-7. PubMed ID: 26355992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TNP-ATP and TNP-ADP as probes of the nucleotide binding site of CheA, the histidine protein kinase in the chemotaxis signal transduction pathway of Escherichia coli.
    Stewart RC; VanBruggen R; Ellefson DD; Wolfe AJ
    Biochemistry; 1998 Sep; 37(35):12269-79. PubMed ID: 9724541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetically Encoded Fluorescent Biosensors to Explore AMPK Signaling and Energy Metabolism.
    Pelosse M; Cottet-Rousselle C; Grichine A; Berger I; Schlattner U
    Exp Suppl; 2016; 107():491-523. PubMed ID: 27812993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions of nucleotide cofactors with the Escherichia coli replication factor DnaC protein.
    Galletto R; Rajendran S; Bujalowski W
    Biochemistry; 2000 Oct; 39(42):12959-69. PubMed ID: 11041861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly selective recognition and fluorescence imaging of adenosine polyphosphates in aqueous solution.
    Zhang M; Ma WJ; He CT; Jiang L; Lu TB
    Inorg Chem; 2013 May; 52(9):4873-9. PubMed ID: 23560560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleotide exchange from the high-affinity ATP-binding site in SecA is the rate-limiting step in the ATPase cycle of the soluble enzyme and occurs through a specialized conformational state.
    Fak JJ; Itkin A; Ciobanu DD; Lin EC; Song XJ; Chou YT; Gierasch LM; Hunt JF
    Biochemistry; 2004 Jun; 43(23):7307-27. PubMed ID: 15182175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetically Encoded Fluorescent Sensor for Poly-ADP-Ribose.
    Serebrovskaya EO; Podvalnaya NM; Dudenkova VV; Efremova AS; Gurskaya NG; Gorbachev DA; Luzhin AV; Kantidze OL; Zagaynova EV; Shram SI; Lukyanov KA
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32679873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A fluorescent sensor of the phosphorylation state of nucleoside diphosphate kinase and its use to monitor nucleoside diphosphate concentrations in real time.
    Brune M; Corrie JE; Webb MR
    Biochemistry; 2001 Apr; 40(16):5087-94. PubMed ID: 11305926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Negative cooperativity in the binding of nucleotides to Escherichia coli replicative helicase DnaB protein. Interactions with fluorescent nucleotide analogs.
    Bujalowski W; Klonowska MM
    Biochemistry; 1993 Jun; 32(22):5888-900. PubMed ID: 8504109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective detection of ATP and ADP in aqueous solution by using a fluorescent zinc receptor.
    Strianese M; Milione S; Maranzana A; Grassi A; Pellecchia C
    Chem Commun (Camb); 2012 Dec; 48(93):11419-21. PubMed ID: 23086379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 61.