These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 19122705)

  • 1. Commercialization of laser-induced breakdown spectroscopy for lead-in-paint inspection.
    Myers RA; Kolodziejski NJ; Squillante MR
    Appl Opt; 2008 Nov; 47(31):G7-14. PubMed ID: 19122705
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of heterogeneous gallstones using laser-induced breakdown spectroscopy (LIBS) and wavelength dispersive X-ray fluorescence (WD-XRF).
    Jaswal BB; Kumar V; Sharma J; Rai PK; Gondal MA; Gondal B; Singh VK
    Lasers Med Sci; 2016 Apr; 31(3):573-9. PubMed ID: 26886588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of poisonous metals in wastewater collected from paint manufacturing plant using laser-induced breakdown spectroscopy.
    Gondal MA; Hussain T
    Talanta; 2007 Jan; 71(1):73-80. PubMed ID: 19071270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soil examination for a forensic trace evidence laboratory - Part 2: Elemental analysis.
    Woods B; Paul Kirkbride K; Lennard C; Robertson J
    Forensic Sci Int; 2014 Dec; 245():195-201. PubMed ID: 25459270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative study of calibration-free laser-induced breakdown spectroscopy methods for quantitative elemental analysis of quartz-bearing limestone.
    Fahad M; Farooq Z; Abrar M
    Appl Opt; 2019 May; 58(13):3501-3508. PubMed ID: 31044853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of lead in paint samples synthesized locally using-laser-induced breakdown spectroscopy.
    Gondal MA; Nasr MM; Ahmed MM; Yamani ZH; Alsalhi MS
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(1):42-9. PubMed ID: 21104494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of XRF and LIBS technologies for on-line sorting of CCA-treated wood waste.
    Solo-Gabriele HM; Townsend TG; Hahn DW; Moskal TM; Hosein N; Jambeck J; Jacobi G
    Waste Manag; 2004; 24(4):413-24. PubMed ID: 15081070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ semi-quantitative analysis of polluted soils by laser-induced breakdown spectroscopy (LIBS).
    Ismaël A; Bousquet B; Michel-Le Pierrès K; Travaillé G; Canioni L; Roy S
    Appl Spectrosc; 2011 May; 65(5):467-73. PubMed ID: 21513588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance evaluation of currently used portable X ray fluorescence instruments for measuring the lead content of paint in field samples.
    Muller Y; Favreau P; Kohler M
    J Occup Environ Hyg; 2014; 11(8):528-37. PubMed ID: 24964951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlation of Trace Silicone Contamination Analyses on Epoxy Composites Using X-ray Photoelectron Spectroscopy (XPS) and Laser-Induced Breakdown Spectroscopy (LIBS).
    Ledesma R; Palmieri F; Campbell B; Yost W; Fitz-Gerald J; Dillingham G; Connell J
    Appl Spectrosc; 2019 Feb; 73(2):229-235. PubMed ID: 30345794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields.
    Hahn DW; Omenetto N
    Appl Spectrosc; 2012 Apr; 66(4):347-419. PubMed ID: 22449322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping of Uranium in Surrogate Nuclear Debris Using Laser-Induced Breakdown Spectroscopy (LIBS).
    Shattan MB; Gragston M; Zhang Z; Auxier JD; McIntosh KG; Parigger CG
    Appl Spectrosc; 2019 Jun; 73(6):591-600. PubMed ID: 30990068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calibration-free quantitative analysis of elemental ratios in intermetallic nanoalloys and nanocomposites using Laser Induced Breakdown Spectroscopy (LIBS).
    Davari SA; Hu S; Mukherjee D
    Talanta; 2017 Mar; 164():330-340. PubMed ID: 28107937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative detection of oxygen in reduced graphene oxide by femtosecond laser-induced breakdown spectroscopy.
    Yang B; Jiang L; Wang S; Wang P; Yang F; Lu Y
    Appl Opt; 2018 Feb; 57(5):1267-1272. PubMed ID: 29469875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel Applications of Laser-Induced Breakdown Spectroscopy.
    Bauer AJ; Buckley SG
    Appl Spectrosc; 2017 Apr; 71(4):553-566. PubMed ID: 28198640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Study on the Mechanism of Laser Paint Removal Based on Emission Spectrum and Composition Analysis].
    Chen KX; Feng GY; Deng GL; Liu CF; Wang DL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Sep; 36(9):2956-60. PubMed ID: 30085486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laser-Induced Breakdown Spectroscopy for the Rapid Characterization of Lead-Free Gunshot Residues.
    Fambro LA; Vandenbos DD; Rosenberg MB; Dockery CR
    Appl Spectrosc; 2017 Apr; 71(4):699-708. PubMed ID: 28374611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis and classification of heterogeneous kidney stones using laser-induced breakdown spectroscopy (LIBS).
    Oztoprak BG; Gonzalez J; Yoo J; Gulecen T; Mutlu N; Russo RE; Gundogdu O; Demir A
    Appl Spectrosc; 2012 Nov; 66(11):1353-61. PubMed ID: 23146192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of lead in water using laser-induced breakdown spectroscopy and laser-induced fluorescence.
    Lui SL; Godwal Y; Taschuk MT; Tsui YY; Fedosejevs R
    Anal Chem; 2008 Mar; 80(6):1995-2000. PubMed ID: 18278880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Standoff Laser-Induced Breakdown Spectroscopy (LIBS) Using a Miniature Wide Field of View Spatial Heterodyne Spectrometer with Sub-Microsteradian Collection Optics.
    Barnett PD; Lamsal N; Angel SM
    Appl Spectrosc; 2017 Apr; 71(4):583-590. PubMed ID: 28103051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.