These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 19122722)

  • 1. Thermal infrared radiance simulation with aggregation modeling (TITAN): an infrared radiative transfer model for heterogeneous three-dimensional surface--application over urban areas.
    Fontanilles G; Briottet X; Fabre S; Trémas T
    Appl Opt; 2008 Nov; 47(31):5799-810. PubMed ID: 19122722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiative transfer solution for rugged and heterogeneous scene observations.
    Miesch C; Briottet X; Kerr YH; Cabot F
    Appl Opt; 2000 Dec; 39(36):6830-46. PubMed ID: 18354698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiative transfer model for aerosols at infrared wavelengths for passive remote sensing applications: revisited.
    Ben-David A; Davidson CE; Embury JF
    Appl Opt; 2008 Nov; 47(31):5924-37. PubMed ID: 19122735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo approach for solving the radiative transfer equation over mountainous and heterogeneous areas.
    Miesch C; Briottet X; Kerr YH; Cabot F
    Appl Opt; 1999 Dec; 38(36):7419-30. PubMed ID: 18324296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Mid-infrared atmosphere radiation transfer analytic model and remote sensing images simulation].
    Yang GJ; Liu QH; Liu Q; Xiao Q; Gu XF; Huang WJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Mar; 29(3):629-34. PubMed ID: 19455788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient radiative transfer model for thermal infrared brightness temperature simulation in cloudy atmospheres.
    Li W; Zhang F; Shi YN; Iwabuchi H; Zhu M; Li J; Han W; Letu H; Ishimoto H
    Opt Express; 2020 Aug; 28(18):25730-25749. PubMed ID: 32906858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Study on the modeling of earth-atmosphere coupling over rugged scenes for hyperspectral remote sensing].
    Zhao HJ; Jiang C; Jia GR
    Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Jan; 34(1):191-5. PubMed ID: 24783559
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aggregation process of optical properties and temperature over heterogeneous surfaces in infrared domain.
    Fontanilles G; Briottet X; Fabre S; Lefebvre S; Vandenhaute PF
    Appl Opt; 2010 Aug; 49(24):4655-69. PubMed ID: 20733638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensor-based clear and cloud radiance calculations in the community radiative transfer model.
    Liu Q; Xue Y; Li C
    Appl Opt; 2013 Jul; 52(20):4981-90. PubMed ID: 23852214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How well can radiance reflected from the ocean-atmosphere system be predicted from measurements at the sea surface?
    Gordon HR; Zhang T
    Appl Opt; 1996 Nov; 35(33):6527-43. PubMed ID: 21127677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiative transfer code SHARM-3D for radiance simulations over a non-Lambertian nonhomogeneous surface: intercomparison study.
    Lyapustin A
    Appl Opt; 2002 Sep; 41(27):5607-15. PubMed ID: 12269559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of soil moisture content from the spectral reflectance of bare soils in the 0.4-2.5 µm domain.
    Fabre S; Briottet X; Lesaignoux A
    Sensors (Basel); 2015 Feb; 15(2):3262-81. PubMed ID: 25648710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. OSOAA: a vector radiative transfer model of coupled atmosphere-ocean system for a rough sea surface application to the estimates of the directional variations of the water leaving reflectance to better process multi-angular satellite sensors data over the ocean.
    Chami M; Lafrance B; Fougnie B; Chowdhary J; Harmel T; Waquet F
    Opt Express; 2015 Oct; 23(21):27829-52. PubMed ID: 26480444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parameterized code SHARM-3D for radiative transfer over inhomogeneous surfaces.
    Lyapustin A; Wang Y
    Appl Opt; 2005 Dec; 44(35):7602-10. PubMed ID: 16363785
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A nonlinear unmixing method in the infrared domain.
    Fontanilles G; Briottet X
    Appl Opt; 2011 Jul; 50(20):3666-77. PubMed ID: 21743580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study on inverse estimation of radiative reflection properties in mid-wavelength infrared region by using the repulsive particle swarm optimization algorithm.
    Yoon KB; Park SJ; Kim TK
    Appl Opt; 2013 Aug; 52(22):5533-8. PubMed ID: 23913075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Green's Function Method for the Radiative Transfer Problem. I. Homogeneous non-Lambertian Surface.
    Lyapustin A; Knyazikhin Y
    Appl Opt; 2001 Jul; 40(21):3495-501. PubMed ID: 18360374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A method of retrieving BRDF from surface reflected radiance using decoupling of atmospheric radiative transfer and surface reflection.
    Radkevich A
    Remote Sens (Basel); 2018 Apr; 10(4):. PubMed ID: 31360541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated efficient radiative transfer model named Dayu for simulating the imager measurements in cloudy atmospheres.
    Li W; Zhang F; Lu C; Jin J; Shi YN; Cai Y; Hu S; Han W
    Opt Express; 2023 May; 31(10):15256-15288. PubMed ID: 37157632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of Thermal Field Distribution in Winter over Beijing from 1985 to 2015 Using Landsat Thermal Data.
    Zhou XY; Sun L; Wei J; Jia SF; Tian XP; Wu T
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Nov; 36(11):3772-9. PubMed ID: 30226715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.