These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 19122723)

  • 1. Analysis of simulated and experimental backscattered images of turbid media in linearly polarized light: estimation of the anisotropy factor.
    Falconet J; Sablong R; Perrin E; Jaillon F; Saint-Jalmes H
    Appl Opt; 2008 Nov; 47(31):5811-20. PubMed ID: 19122723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Backscattered stokes vectors of turbid media: anisotropy factor and reduced scattering coefficient estimation.
    Falconet J; Sablong R; Perrin E; Jaillon F; Saint-Jalmes H
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1619-22. PubMed ID: 18002282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scattering coefficient determination in turbid media with backscattered polarized light.
    Jaillon F; Saint-Jalmes H
    J Biomed Opt; 2005; 10(3):034016. PubMed ID: 16229660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noninvasive measurement of scattering anisotropy in turbid materials by nonnormal incident illumination.
    Joshi N; Donner C; Jensen HW
    Opt Lett; 2006 Apr; 31(7):936-8. PubMed ID: 16599217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Combined optical intensity and polarization methodology for analyte concentration determination in simulated optically clear and turbid biological media.
    Wood MF; Côté D; Vitkin IA
    J Biomed Opt; 2008; 13(4):044037. PubMed ID: 19021364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Propagation of polarized light in birefringent turbid media: a Monte Carlo study.
    Wang X; Wang LV
    J Biomed Opt; 2002 Jul; 7(3):279-90. PubMed ID: 12175276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polarized light propagation in multiply scattering media exhibiting both linear birefringence and optical activity: Monte Carlo model and experimental methodology.
    Wood MF; Guo X; Vitkin IA
    J Biomed Opt; 2007; 12(1):014029. PubMed ID: 17343504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Depolarization of light in turbid media: a scattering event resolved Monte Carlo study.
    Guo X; Wood MF; Ghosh N; Vitkin IA
    Appl Opt; 2010 Jan; 49(2):153-62. PubMed ID: 20062501
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence.
    Ghosh N; Wood MF; Vitkin IA
    J Biomed Opt; 2008; 13(4):044036. PubMed ID: 19021363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media.
    Liu Q; Ramanujam N
    J Opt Soc Am A Opt Image Sci Vis; 2007 Apr; 24(4):1011-25. PubMed ID: 17361287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-resolved backscattering of circularly and linearly polarized light in a turbid medium.
    Ni X; Alfano RR
    Opt Lett; 2004 Dec; 29(23):2773-5. PubMed ID: 15605501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-dimensional backscattering Mueller matrix of sphere-cylinder scattering medium.
    He H; Zeng N; Li W; Yun T; Liao R; He Y; Ma H
    Opt Lett; 2010 Jul; 35(14):2323-5. PubMed ID: 20634817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation of polarization-sensitive optical coherence tomography images by a Monte Carlo method.
    Meglinski I; Kirillin M; Kuzmin V; Myllylä R
    Opt Lett; 2008 Jul; 33(14):1581-3. PubMed ID: 18628804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Backscattering target detection in a turbid medium by use of circularly and linearly polarized light.
    Kartazayeva SA; Ni X; Alfano RR
    Opt Lett; 2005 May; 30(10):1168-70. PubMed ID: 15943299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polarization-degree imaging contrast in turbid media: a quantitative study.
    Shao H; He Y; Li W; Ma H
    Appl Opt; 2006 Jun; 45(18):4491-6. PubMed ID: 16778959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Real-time absorption and scattering characterization of slab-shaped turbid samples obtained by a combination of angular and spatially resolved measurements.
    Dam JS; Yavari N; Sørensen S; Andersson-Engels S
    Appl Opt; 2005 Jul; 44(20):4281-90. PubMed ID: 16045216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring the scattering coefficient of turbid media from two-photon microscopy.
    Sevrain D; Dubreuil M; Leray A; Odin C; Le Grand Y
    Opt Express; 2013 Oct; 21(21):25221-35. PubMed ID: 24150363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perturbation and differential Monte Carlo methods for measurement of optical properties in a layered epithelial tissue model.
    Seo I; You JS; Hayakawa CK; Venugopalan V
    J Biomed Opt; 2007; 12(1):014030. PubMed ID: 17343505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mueller matrix imaging of human colon tissue for cancer diagnostics: how Monte Carlo modeling can help in the interpretation of experimental data.
    Antonelli MR; Pierangelo A; Novikova T; Validire P; Benali A; Gayet B; De Martino A
    Opt Express; 2010 May; 18(10):10200-8. PubMed ID: 20588874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sources of possible artefacts in the contrast evaluation for the backscattering polarimetric images of different targets in turbid medium.
    Novikova T; Bénière A; Goudail F; De Martino A
    Opt Express; 2009 Dec; 17(26):23851-60. PubMed ID: 20052095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.