These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 19122773)
21. ARIA: automated NOE assignment and NMR structure calculation. Linge JP; Habeck M; Rieping W; Nilges M Bioinformatics; 2003 Jan; 19(2):315-6. PubMed ID: 12538267 [TBL] [Abstract][Full Text] [Related]
22. A complete algorithm to resolve ambiguity for intersubunit NOE assignment in structure determination of symmetric homo-oligomers. Potluri S; Yan AK; Donald BR; Bailey-Kellogg C Protein Sci; 2007 Jan; 16(1):69-81. PubMed ID: 17192589 [TBL] [Abstract][Full Text] [Related]
23. A geometric arrangement algorithm for structure determination of symmetric protein homo-oligomers from NOEs and RDCs. Martin JW; Yan AK; Bailey-Kellogg C; Zhou P; Donald BR J Comput Biol; 2011 Nov; 18(11):1507-23. PubMed ID: 22035328 [TBL] [Abstract][Full Text] [Related]
24. Towards structural genomics of RNA: rapid NMR resonance assignment and simultaneous RNA tertiary structure determination using residual dipolar couplings. Al-Hashimi HM; Gorin A; Majumdar A; Gosser Y; Patel DJ J Mol Biol; 2002 May; 318(3):637-49. PubMed ID: 12054812 [TBL] [Abstract][Full Text] [Related]
25. An expectation/maximization nuclear vector replacement algorithm for automated NMR resonance assignments. Langmead CJ; Donald BR J Biomol NMR; 2004 Jun; 29(2):111-38. PubMed ID: 15014227 [TBL] [Abstract][Full Text] [Related]
27. The fumarate sensor DcuS: progress in rapid protein fold elucidation by combining protein structure prediction methods with NMR spectroscopy. Meiler J; Baker D J Magn Reson; 2005 Apr; 173(2):310-6. PubMed ID: 15780923 [TBL] [Abstract][Full Text] [Related]
28. Global folds of proteins with low densities of NOEs using residual dipolar couplings: application to the 370-residue maltodextrin-binding protein. Mueller GA; Choy WY; Yang D; Forman-Kay JD; Venters RA; Kay LE J Mol Biol; 2000 Jun; 300(1):197-212. PubMed ID: 10864509 [TBL] [Abstract][Full Text] [Related]
29. Determination of protein global folds using backbone residual dipolar coupling and long-range NOE restraints. Giesen AW; Homans SW; Brown JM J Biomol NMR; 2003 Jan; 25(1):63-71. PubMed ID: 12567000 [TBL] [Abstract][Full Text] [Related]
30. A polynomial-time algorithm for de novo protein backbone structure determination from nuclear magnetic resonance data. Wang L; Mettu RR; Donald BR J Comput Biol; 2006 Sep; 13(7):1267-88. PubMed ID: 17037958 [TBL] [Abstract][Full Text] [Related]
31. Improvement of hydrogen bond geometry in protein NMR structures by residual dipolar couplings--an assessment of the interrelation of NMR restraints. Jensen PR; Axelsen JB; Lerche MH; Poulsen FM J Biomol NMR; 2004 Jan; 28(1):31-41. PubMed ID: 14739637 [TBL] [Abstract][Full Text] [Related]
32. Backbone resonance assignment and order tensor estimation using residual dipolar couplings. Shealy P; Liu Y; Simin M; Valafar H J Biomol NMR; 2011 Aug; 50(4):357-69. PubMed ID: 21667298 [TBL] [Abstract][Full Text] [Related]
33. Improved reliability, accuracy and quality in automated NMR structure calculation with ARIA. Mareuil F; Malliavin TE; Nilges M; Bardiaux B J Biomol NMR; 2015 Aug; 62(4):425-38. PubMed ID: 25861734 [TBL] [Abstract][Full Text] [Related]
34. Determination of the three-dimensional solution structure of the C-terminal domain of cellobiohydrolase I from Trichoderma reesei. A study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing. Kraulis J; Clore GM; Nilges M; Jones TA; Pettersson G; Knowles J; Gronenborn AM Biochemistry; 1989 Sep; 28(18):7241-57. PubMed ID: 2554967 [TBL] [Abstract][Full Text] [Related]
35. Backbone assignment of proteins with known structure using residual dipolar couplings. Jung YS; Zweckstetter M J Biomol NMR; 2004 Sep; 30(1):25-35. PubMed ID: 15452432 [TBL] [Abstract][Full Text] [Related]
36. Combining automated peak tracking in SAR by NMR with structure-based backbone assignment from 15N-NOESY. Jang R; Gao X; Li M BMC Bioinformatics; 2012 Mar; 13 Suppl 3(Suppl 3):S4. PubMed ID: 22536902 [TBL] [Abstract][Full Text] [Related]
37. Docking of protein-protein complexes on the basis of highly ambiguous intermolecular distance restraints derived from 1H/15N chemical shift mapping and backbone 15N-1H residual dipolar couplings using conjoined rigid body/torsion angle dynamics. Clore GM; Schwieters CD J Am Chem Soc; 2003 Mar; 125(10):2902-12. PubMed ID: 12617657 [TBL] [Abstract][Full Text] [Related]
38. NMR structure of cysteinyl-phosphorylated enzyme IIB of the N,N'-diacetylchitobiose-specific phosphoenolpyruvate-dependent phosphotransferase system of Escherichia coli. Ab E; Schuurman-Wolters GK; Nijlant D; Dijkstra K; Saier MH; Robillard GT; Scheek RM J Mol Biol; 2001 May; 308(5):993-1009. PubMed ID: 11352587 [TBL] [Abstract][Full Text] [Related]
39. Solution structure of recombinant hirudin and the Lys-47----Glu mutant: a nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing study. Folkers PJ; Clore GM; Driscoll PC; Dodt J; Köhler S; Gronenborn AM Biochemistry; 1989 Mar; 28(6):2601-17. PubMed ID: 2567183 [TBL] [Abstract][Full Text] [Related]
40. Automated amino acid side-chain NMR assignment of proteins using (13)C- and (15)N-resolved 3D [ (1)H, (1)H]-NOESY. Fiorito F; Herrmann T; Damberger FF; Wüthrich K J Biomol NMR; 2008 Sep; 42(1):23-33. PubMed ID: 18709333 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]