BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 1912287)

  • 1. Hydrophobic core of molten-globule state of bovine carbonic anhydrase B.
    Mitaku S; Ishido S; Hirano Y; Itoh H; Kataoka R; Saitô N
    Biophys Chem; 1991 Jul; 40(3):217-22. PubMed ID: 1912287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyrene excimer fluorescence as a proximity probe for investigation of residual structure in the unfolded state of human carbonic anhydrase II.
    Hammarström P; Kalman B; Jonsson BH; Carlsson U
    FEBS Lett; 1997 Dec; 420(1):63-8. PubMed ID: 9450551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 'Molten-globule' state accumulates in carbonic anhydrase folding.
    Dolgikh DA; Kolomiets AP; Bolotina IA; Ptitsyn OB
    FEBS Lett; 1984 Jan; 165(1):88-92. PubMed ID: 6420185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of polyethylene glycol interaction with the molten globule folding intermediate of bovine carbonic anhydrase B.
    Cleland JL; Randolph TW
    J Biol Chem; 1992 Feb; 267(5):3147-53. PubMed ID: 1310682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cofactor-induced refolding: refolding of molten globule carbonic anhydrase induced by Zn(II) and Co(II).
    Andersson D; Hammarström P; Carlsson U
    Biochemistry; 2001 Mar; 40(9):2653-61. PubMed ID: 11258876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Further evidence on the equilibrium "pre-molten globule state": four-state guanidinium chloride-induced unfolding of carbonic anhydrase B at low temperature.
    Uversky VN; Ptitsyn OB
    J Mol Biol; 1996 Jan; 255(1):215-28. PubMed ID: 8568868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption to silica nanoparticles of human carbonic anhydrase II and truncated forms induce a molten-globule-like structure.
    Billsten P; Freskgård PO; Carlsson U; Jonsson BH; Elwing H
    FEBS Lett; 1997 Jan; 402(1):67-72. PubMed ID: 9013861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molten globule-like state of bovine carbonic anhydrase in the presence of acetonitrile.
    Safarian S; Saffarzadeh M; Zargar SJ; Moosavi-Movahedi AA
    J Biochem; 2006 Jun; 139(6):1025-33. PubMed ID: 16788053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molten-globule state of carbonic anhydrase binds to the chaperone-like alpha-crystallin.
    Rajaraman K; Raman B; Rao CM
    J Biol Chem; 1996 Nov; 271(44):27595-600. PubMed ID: 8910347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural mapping of an aggregation nucleation site in a molten globule intermediate.
    Hammarström P; Persson M; Freskgârd PO; Mârtensson LG; Andersson D; Jonsson BH; Carlsson U
    J Biol Chem; 1999 Nov; 274(46):32897-903. PubMed ID: 10551854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a molten globule state of bovine carbonic anhydrase III: loss of asymmetrical environment of the aromatic residues has a profound effect on both the near- and far-UV CD spectrum.
    Borén K; Andersson P; Larsson M; Carlsson U
    Biochim Biophys Acta; 1999 Feb; 1430(1):111-8. PubMed ID: 10082939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Partial phase diagram of aqueous bovine carbonic anhydrase: analyses of the pressure-dependent temperatures of the low- to physiological-temperature nondenaturational conformational change and of unfolding to the molten globule state.
    McNevin SL; Nguyen DT; Britt BM
    J Biomol Struct Dyn; 2008 Oct; 26(2):263-72. PubMed ID: 18597548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping the folding intermediate of human carbonic anhydrase II. Probing substructure by chemical reactivity and spin and fluorescence labeling of engineered cysteine residues.
    Svensson M; Jonasson P; Freskgård PO; Jonsson BH; Lindgren M; Mårtensson LG; Gentile M; Borén K; Carlsson U
    Biochemistry; 1995 Jul; 34(27):8606-20. PubMed ID: 7612602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two slow stages in refolding of bovine carbonic anhydrase B are due to proline isomerization.
    Semisotnov GV; Uversky VN; Sokolovsky IV; Gutin AM; Razgulyaev OI; Rodionova NA
    J Mol Biol; 1990 Jun; 213(3):561-8. PubMed ID: 2112610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water-protein interactions in the molten-globule state of carbonic anhydrase b: an NMR spin-diffusion study.
    Kutyshenko VP; Cortijo M
    Protein Sci; 2000 Aug; 9(8):1540-7. PubMed ID: 10975575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for a molten globule state as a general intermediate in protein folding.
    Ptitsyn OB; Pain RH; Semisotnov GV; Zerovnik E; Razgulyaev OI
    FEBS Lett; 1990 Mar; 262(1):20-4. PubMed ID: 2318308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Guanidine hydrochloride mediated unfolding of a carbonic anhydrase molten globule].
    Kutyshenko VP; Prokhorov DA
    Mol Biol (Mosk); 2003; 37(6):1055-60. PubMed ID: 14714501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of interaction of partially folded proteins with a hydrophobic dye: evidence that molten globule character is maximal in early folding intermediates.
    Engelhard M; Evans PA
    Protein Sci; 1995 Aug; 4(8):1553-62. PubMed ID: 8520481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 'All-or-none' mechanism of the molten globule unfolding.
    Uversky VN; Semisotnov GV; Pain RH; Ptitsyn OB
    FEBS Lett; 1992 Dec; 314(1):89-92. PubMed ID: 1451808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of 'molten globule'-like state in all beta-sheet protein.
    Kumar TK; Jayaraman G; Lee CS; Sivaraman T; Lin WY; Yu C
    Biochem Biophys Res Commun; 1995 Feb; 207(2):536-43. PubMed ID: 7864840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.