These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 19123012)

  • 1. Origin of axial prestretch and residual stress in arteries.
    Cardamone L; Valentín A; Eberth JF; Humphrey JD
    Biomech Model Mechanobiol; 2009 Dec; 8(6):431-46. PubMed ID: 19123012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth and remodeling in a thick-walled artery model: effects of spatial variations in wall constituents.
    Alford PW; Humphrey JD; Taber LA
    Biomech Model Mechanobiol; 2008 Aug; 7(4):245-62. PubMed ID: 17786493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the in-series and in-parallel contribution of elastin assessed by a structure-based biomechanical model of the arterial wall.
    Roy S; Tsamis A; Prod'hom G; Stergiopulos N
    J Biomech; 2008; 41(4):737-43. PubMed ID: 18456913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of the three-dimensional residual stresses on the mechanical properties of arterial walls.
    Zheng X; Ren J
    J Theor Biol; 2016 Mar; 393():118-26. PubMed ID: 26780646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A microstructurally motivated model of arterial wall mechanics with mechanobiological implications.
    Bellini C; Ferruzzi J; Roccabianca S; Di Martino ES; Humphrey JD
    Ann Biomed Eng; 2014 Mar; 42(3):488-502. PubMed ID: 24197802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling carotid artery adaptations to dynamic alterations in pressure and flow over the cardiac cycle.
    Cardamone L; Valentín A; Eberth JF; Humphrey JD
    Math Med Biol; 2010 Dec; 27(4):343-71. PubMed ID: 20484365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A constitutive modeling interpretation of the relationship among carotid artery stiffness, blood pressure, and age in hypertensive subjects.
    Spronck B; Heusinkveld MH; Donders WP; de Lepper AG; Op't Roodt J; Kroon AA; Delhaas T; Reesink KD
    Am J Physiol Heart Circ Physiol; 2015 Mar; 308(6):H568-82. PubMed ID: 25539709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Constitutive description of human femoropopliteal artery aging.
    Kamenskiy A; Seas A; Deegan P; Poulson W; Anttila E; Sim S; Desyatova A; MacTaggart J
    Biomech Model Mechanobiol; 2017 Apr; 16(2):681-692. PubMed ID: 27771811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discrete contributions of elastic fiber components to arterial development and mechanical compliance.
    Carta L; Wagenseil JE; Knutsen RH; Mariko B; Faury G; Davis EC; Starcher B; Mecham RP; Ramirez F
    Arterioscler Thromb Vasc Biol; 2009 Dec; 29(12):2083-9. PubMed ID: 19850904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carotid artery mechanical properties and stresses quantified using in vivo data from normotensive and hypertensive humans.
    Masson I; Beaussier H; Boutouyrie P; Laurent S; Humphrey JD; Zidi M
    Biomech Model Mechanobiol; 2011 Dec; 10(6):867-82. PubMed ID: 21207095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Review of the Techniques Used for Investigating the Role Elastin and Collagen Play in Arterial Wall Mechanics.
    Giudici A; Wilkinson IB; Khir AW
    IEEE Rev Biomed Eng; 2021; 14():256-269. PubMed ID: 32746366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical and structural contributions of elastin and collagen fibers to interlamellar bonding in the arterial wall.
    Wang R; Yu X; Zhang Y
    Biomech Model Mechanobiol; 2021 Feb; 20(1):93-106. PubMed ID: 32705413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contribution of collagen, elastin, and smooth muscle to in vivo human brachial artery wall stress and elastic modulus.
    Bank AJ; Wang H; Holte JE; Mullen K; Shammas R; Kubo SH
    Circulation; 1996 Dec; 94(12):3263-70. PubMed ID: 8989139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical study on the effects of pressure-induced remodeling on geometry and mechanical non-homogeneity of conduit arteries.
    Rachev A; Gleason RL
    Biomech Model Mechanobiol; 2011 Feb; 10(1):79-93. PubMed ID: 20473704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of biaxial mechanical behavior of porcine aorta under gradual elastin degradation.
    Zeinali-Davarani S; Chow MJ; Turcotte R; Zhang Y
    Ann Biomed Eng; 2013 Jul; 41(7):1528-38. PubMed ID: 23297000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A method for incorporating three-dimensional residual stretches/stresses into patient-specific finite element simulations of arteries.
    Pierce DM; Fastl TE; Rodriguez-Vila B; Verbrugghe P; Fourneau I; Maleux G; Herijgers P; Gomez EJ; Holzapfel GA
    J Mech Behav Biomed Mater; 2015 Jul; 47():147-164. PubMed ID: 25931035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling effects of axial extension on arterial growth and remodeling.
    Valentín A; Humphrey JD
    Med Biol Eng Comput; 2009 Sep; 47(9):979-87. PubMed ID: 19649667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arterial mechanics considering the structural and mechanical contributions of ECM constituents.
    Wang Y; Zeinali-Davarani S; Zhang Y
    J Biomech; 2016 Aug; 49(12):2358-65. PubMed ID: 26947034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-course of the human thoracic aorta ageing process assessed using uniaxial mechanical testing and constitutive modelling.
    Giudici A; Li Y; Yasmin ; Cleary S; Connolly K; McEniery C; Wilkinson IB; Khir AW
    J Mech Behav Biomed Mater; 2022 Oct; 134():105339. PubMed ID: 35868063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanics of carotid arteries in a mouse model of Marfan Syndrome.
    Eberth JF; Taucer AI; Wilson E; Humphrey JD
    Ann Biomed Eng; 2009 Jun; 37(6):1093-104. PubMed ID: 19350391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.