These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 19123135)

  • 21. Tight junction formation in early Xenopus laevis embryos: identification and ultrastructural characterization of junctional crests and junctional vesicles.
    Cardellini P; Cirelli A; Citi S
    Cell Tissue Res; 2007 Nov; 330(2):247-56. PubMed ID: 17786481
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Surface contraction and expansion waves correlated with differentiation in axolotl embryos. II. In contrast to urodeles, the anuran Xenopus laevis does not show furrowing surface contraction waves.
    Nieuwkoop PD; Björklund NK; Gordon R
    Int J Dev Biol; 1996 Aug; 40(4):661-4. PubMed ID: 8877438
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydrocolloid coating of Xenopus laevis embryos.
    Kampf N; Zohar C; Nussinovitch A
    Biotechnol Prog; 2000; 16(3):480-7. PubMed ID: 10835252
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Early development of Xenopus embryos is affected by simulated gravity.
    Yokota H; Neff AW; Malacinski GM
    Adv Space Res; 1994; 14(8):249-55. PubMed ID: 11537924
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Artificially applied tensions normalize development of relaxed Xenopus Laevis embryos].
    Belousov LV; Ermakov AS
    Ontogenez; 2001; 32(4):288-94. PubMed ID: 11573426
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 2,4-D butoxyethyl ester kinetics in embryos of Xenopus laevis: the role of the embryonic jelly coat in reducing chemical absorption.
    Edginton AN; Rouleau C; Stephenson GR; Boermans HJ
    Arch Environ Contam Toxicol; 2007 Jan; 52(1):113-20. PubMed ID: 17031753
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Twin Xenopus laevis embryos appearing from flattened eggs.
    Sato E
    Proc Jpn Acad Ser B Phys Biol Sci; 2014; 90(8):307-12. PubMed ID: 25311141
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Subcortical rotation in Xenopus eggs: an early step in embryonic axis specification.
    Vincent JP; Gerhart JC
    Dev Biol; 1987 Oct; 123(2):526-39. PubMed ID: 3653523
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oscillation of intracellular free calcium in cleaving and cleavage-arrested embryos of Xenopus laevis.
    Kubota HY; Yoshimoto Y; Hiramoto Y
    Dev Biol; 1993 Dec; 160(2):512-8. PubMed ID: 8253280
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reversal of dorsoventral polarity in Xenopus laevis embryos by 180 degrees rotation of the animal micromeres at the eight-cell stage.
    Cardellini P
    Dev Biol; 1988 Aug; 128(2):428-34. PubMed ID: 3396766
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Ultraweak emissions of the developing Xenopus laevis eggs and embryos].
    Volodiaev IV; Belousov LV
    Ontogenez; 2007; 38(5):386-93. PubMed ID: 18038657
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dissection of organizer and animal pole explants from Xenopus laevis embryos and assembly of a cell adhesion assay.
    Ogata S; Cho KW
    J Vis Exp; 2007; (3):187. PubMed ID: 18978993
    [No Abstract]   [Full Text] [Related]  

  • 33. Comparison of cell division and cell sizes in normal embryos and lithium-induced exogastrulae of Xenopus laevis.
    Osborn JC; Stanisstreet M
    Acta Embryol Exp (Palermo); 1977; (3):283-93. PubMed ID: 605749
    [No Abstract]   [Full Text] [Related]  

  • 34. Midblastula transition (MBT) of the cell cycles in the yolk and pigment granule-free translucent blastomeres obtained from centrifuged Xenopus embryos.
    Iwao Y; Uchida Y; Ueno S; Yoshizaki N; Masui Y
    Dev Growth Differ; 2005 Jun; 47(5):283-94. PubMed ID: 16026537
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Furrow-related contractions are inhibited but furrow-unrelated contractions are not affected in af mutant eggs of Xenopus laevis.
    Asada-Kubota M; Kubota HY
    Dev Biol; 1991 Oct; 147(2):354-62. PubMed ID: 1916014
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Plastic embedding and sectioning of Xenopus laevis embryos.
    Ogata S; Kawauchi S; Calof A; Cho KW
    J Vis Exp; 2007; (3):188. PubMed ID: 18978994
    [No Abstract]   [Full Text] [Related]  

  • 37. Responses to DNA damage in Xenopus: cell death or cell cycle arrest.
    Greenwood J; Costanzo V; Robertson K; Hensey C; Gautier J
    Novartis Found Symp; 2001; 237():221-30; discussion 230-4. PubMed ID: 11444046
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Generation and Care of Xenopus laevis and Xenopus tropicalis Embryos.
    Wlizla M; McNamara S; Horb ME
    Methods Mol Biol; 2018; 1865():19-32. PubMed ID: 30151756
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Expression patterns of Src-family tyrosine kinases during Xenopus laevis development.
    Ferjentsik Z; Sindelka R; Jonak J
    Int J Dev Biol; 2009; 53(1):163-8. PubMed ID: 19123139
    [TBL] [Abstract][Full Text] [Related]  

  • 40. How Xenopus laevis embryos replicate reliably: investigating the random-completion problem.
    Yang SC; Bechhoefer J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 1):041917. PubMed ID: 18999465
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.