These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 19123175)

  • 1. Tailoring the pore size and architecture of CeO2/TiO2 core/shell inverse opals by atomic layer deposition.
    Alessandri I; Zucca M; Ferroni M; Bontempi E; Depero LE
    Small; 2009 Mar; 5(3):336-40. PubMed ID: 19123175
    [No Abstract]   [Full Text] [Related]  

  • 2. Optical properties of nanoparticle-based metallodielectric inverse opals.
    Wang D; Li J; Chan CT; Salgueiriño-Maceira V; Liz-Marzán LM; Romanov S; Caruso F
    Small; 2005 Jan; 1(1):122-30. PubMed ID: 17193362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metallodielectric hollow shells: optical and catalytic properties.
    Pastoriza-Santos I; Pérez-Juste J; Carregal-Romero S; Hervés P; Liz-Marzán LM
    Chem Asian J; 2006 Nov; 1(5):730-6. PubMed ID: 17441116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Preparation of Ce-loaded nano-TiO2 and study on its UV-Vis reflective spectrum].
    Liu XF; Zhang L; Tu MJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Feb; 25(2):274-6. PubMed ID: 15852875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasma-controlled nanocrystallinity and phase composition of TiO2: a smart way to enhance biomimetic response.
    Zhou W; Zhong X; Wu X; Yuan L; Shu Q; Xia Y; Ostrikov KK
    J Biomed Mater Res A; 2007 May; 81(2):453-64. PubMed ID: 17133445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical and electrochemical properties of CeO2 spindles.
    Zhang DE; Zhang XJ; Ni XM; Song JM; Zheng HG
    Chemphyschem; 2006 Dec; 7(12):2468-70. PubMed ID: 17072941
    [No Abstract]   [Full Text] [Related]  

  • 7. Preparation of ligand-free TiO2 (anatase) nanoparticles through a nonaqueous process and their surface functionalization.
    Kotsokechagia T; Cellesi F; Thomas A; Niederberger M; Tirelli N
    Langmuir; 2008 Jun; 24(13):6988-97. PubMed ID: 18522445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amphiphilic TiO2 nanotube arrays: an actively controllable drug delivery system.
    Song YY; Schmidt-Stein F; Bauer S; Schmuki P
    J Am Chem Soc; 2009 Apr; 131(12):4230-2. PubMed ID: 19317500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of barium strontium titanate thin films via electrophoretic deposition process.
    Wang HW; Cheng PC; Liang CF; Chang YS
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Dec; 55(12):2539-43. PubMed ID: 19126478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TiO2@CeOx core-shell nanoparticles as artificial enzymes with peroxidase-like activity.
    Artiglia L; Agnoli S; Paganini MC; Cattelan M; Granozzi G
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):20130-6. PubMed ID: 25321080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Size and size distribution balance the dispersion of colloidal CeO2 nanoparticles in organic solvents.
    Arita T; Yoo J; Ueda Y; Adschiri T
    Nanoscale; 2010 May; 2(5):689-93. PubMed ID: 20648311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DRIFTS investigation and DFT calculation of the adsorption of CO on Pt/TiO2, Pt/CeO2 and FeOx/Pt/CeO2.
    Gao H; Xu W; He H; Shi X; Zhang X; Tanaka K
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Dec; 71(4):1193-8. PubMed ID: 18550422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shape of CeO2 nanoparticles using simulated amorphisation and recrystallisation.
    Sayle TX; Parker SC; Sayle DC
    Chem Commun (Camb); 2004 Nov; (21):2438-9. PubMed ID: 15514804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation of TiO2, CeO2, and ZrO2 hierarchical structures in "one-pot" reactions.
    Zhang H; Li H; Li W; Meng S; Li D
    J Colloid Interface Sci; 2009 May; 333(2):764-70. PubMed ID: 19249791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis, characterization and computational study of nitrogen-doped CeO2 nanoparticles with visible-light activity.
    Mao C; Zhao Y; Qiu X; Zhu J; Burda C
    Phys Chem Chem Phys; 2008 Sep; 10(36):5633-8. PubMed ID: 18956099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-field magnetoresistance effect in core-shell structured La(0.7) Sr(0.3) CoO(3) nanoparticles.
    Wang Y; Fan HJ
    Small; 2012 Apr; 8(7):1060-5. PubMed ID: 22331674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toxicity of CeO2 nanoparticles - the effect of nanoparticle properties.
    Leung YH; Yung MM; Ng AM; Ma AP; Wong SW; Chan CM; Ng YH; Djurišić AB; Guo M; Wong MT; Leung FC; Chan WK; Leung KM; Lee HK
    J Photochem Photobiol B; 2015 Apr; 145():48-59. PubMed ID: 25768267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication and photocatalytic activities in visible and UV light regions of Ag@TiO2 and NiAg@TiO2 nanoparticles.
    Chuang HY; Chen DH
    Nanotechnology; 2009 Mar; 20(10):105704. PubMed ID: 19417532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile fabrication of core-in-shell particles by the slow removal of the core and its use in the encapsulation of metal nanoparticles.
    Choi WS; Koo HY; Kim DY
    Langmuir; 2008 May; 24(9):4633-6. PubMed ID: 18410163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A highly reactive and sinter-resistant catalytic system based on platinum nanoparticles embedded in the inner surfaces of CeO2 hollow fibers.
    Yoon K; Yang Y; Lu P; Wan D; Peng HC; Stamm Masias K; Fanson PT; Campbell CT; Xia Y
    Angew Chem Int Ed Engl; 2012 Sep; 51(38):9543-6. PubMed ID: 22930556
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.