These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
481 related articles for article (PubMed ID: 19123195)
1. Assessing carbohydrate-carbohydrate interactions by NMR spectroscopy: the trisaccharide epitope from the marine sponge Microciona prolifera. Santos JI; Carvalho de Souza A; Cañada FJ; Martín-Santamaría S; Kamerling JP; Jiménez-Barbero J Chembiochem; 2009 Feb; 10(3):511-9. PubMed ID: 19123195 [TBL] [Abstract][Full Text] [Related]
2. Gold nanoparticles coated with a pyruvated trisaccharide epitope of the extracellular proteoglycan of Microciona prolifera as potential tools to explore carbohydrate-mediated cell recognition. Carvalho de Souza A; Vliegenthart JF; Kamerling JP Org Biomol Chem; 2008 Jun; 6(12):2095-102. PubMed ID: 18528571 [TBL] [Abstract][Full Text] [Related]
3. Gold glyconanoparticles for mimics and measurement of metal ion-mediated carbohydrate-carbohydrate interactions. Reynolds AJ; Haines AH; Russell DA Langmuir; 2006 Jan; 22(3):1156-63. PubMed ID: 16430279 [TBL] [Abstract][Full Text] [Related]
4. Adhesion forces in the self-recognition of oligosaccharide epitopes of the proteoglycan aggregation factor of the marine sponge Microciona prolifera. Carvalho de Souza A; Ganchev DN; Snel MM; van der Eerden JP; Vliegenthart JF; Kamerling JP Glycoconj J; 2009 May; 26(4):457-65. PubMed ID: 18843533 [TBL] [Abstract][Full Text] [Related]
5. Molecular dynamics simulation and NMR study of a blood group H trisaccharide. Widmalm G; Venable RM Biopolymers; 1994 Aug; 34(8):1079-88. PubMed ID: 8075388 [TBL] [Abstract][Full Text] [Related]
6. NMR investigations of protein-carbohydrate interactions: studies on the relevance of Trp/Tyr variations in lectin binding sites as deduced from titration microcalorimetry and NMR studies on hevein domains. Determination of the NMR structure of the complex between pseudohevein and N,N',N"-triacetylchitotriose. Asensio JL; Siebert HC; von Der Lieth CW; Laynez J; Bruix M; Soedjanaamadja UM; Beintema JJ; Cañada FJ; Gabius HJ; Jiménez-Barbero J Proteins; 2000 Aug; 40(2):218-36. PubMed ID: 10842338 [TBL] [Abstract][Full Text] [Related]
7. Weak calcium-mediated interactions between Lewis X-related trisaccharides studied by NMR measurements of residual dipolar couplings. Nodet G; Poggi L; Abergel D; Gourmala C; Dong D; Zhang Y; Mallet JM; Bodenhausen G J Am Chem Soc; 2007 Jul; 129(29):9080-5. PubMed ID: 17608422 [TBL] [Abstract][Full Text] [Related]
8. Thermodynamic evidence for Ca2+-mediated self-aggregation of Lewis X gold glyconanoparticles. A model for cell adhesion via carbohydrate-carbohydrate interaction. de la Fuente JM; Eaton P; Barrientos AG; Menéndez M; Penadés S J Am Chem Soc; 2005 May; 127(17):6192-7. PubMed ID: 15853323 [TBL] [Abstract][Full Text] [Related]
9. NMR analysis of carbohydrate-protein interactions. Angulo J; Rademacher C; Biet T; Benie AJ; Blume A; Peters H; Palcic M; Parra F; Peters T Methods Enzymol; 2006; 416():12-30. PubMed ID: 17113857 [TBL] [Abstract][Full Text] [Related]
10. Carbohydrate-based DNA ligands: sugar-oligoamides as a tool to study carbohydrate-nucleic acid interactions. Martin JN; Muñoz EM; Schwergold C; Souard F; Asensio JL; Jiménez-Barbero J; Cañada J; Vicent C J Am Chem Soc; 2005 Jul; 127(26):9518-33. PubMed ID: 15984879 [TBL] [Abstract][Full Text] [Related]
11. A conformational dynamics study of alpha-l-Rhap-(1-->2)[alpha-l-Rhap-(1-->3)]-alpha-l-Rhap-OMe in solution by NMR experiments and molecular simulations. Eklund R; Lycknert K; Söderman P; Widmalm G J Phys Chem B; 2005 Oct; 109(42):19936-45. PubMed ID: 16853578 [TBL] [Abstract][Full Text] [Related]
12. Analysis of carbohydrate-carbohydrate interactions using gold glyconanoparticles and oligosaccharide self-assembling monolayers. Carvalho de Souza A; Kamerling JP Methods Enzymol; 2006; 417():221-43. PubMed ID: 17132508 [TBL] [Abstract][Full Text] [Related]
13. Structure and hydration of the amylopectin trisaccharide building blocks--Synthesis, NMR, and molecular dynamics. Hansen PI; Larsen FH; Motawia SM; Blennow A; Spraul M; Dvortsak P; Engelsen SB Biopolymers; 2008 Dec; 89(12):1179-93. PubMed ID: 18712853 [TBL] [Abstract][Full Text] [Related]
14. A conformational study of the vicinally branched trisaccharide beta-D-glcp-(1 --> 2)[beta-D-glcp-(1 --> 3)]alpha-D-Manp-OMe by nuclear Overhauser effect spectroscopy (NOESY) and transverse rotating-frame Overhauser effect spectroscopy (TROESY) experiments: comparison to Monte Carlo and Langevin dynamics simulations. Kjellberg A; Widmalm G Biopolymers; 1999 Oct; 50(4):391-9. PubMed ID: 10423548 [TBL] [Abstract][Full Text] [Related]
15. Toward the understanding of the structure and dynamics of protein-carbohydrate interactions: molecular dynamics studies of the complexes between hevein and oligosaccharidic ligands. Colombo G; Meli M; Cañada J; Asensio JL; Jiménez-Barbero J Carbohydr Res; 2004 Apr; 339(5):985-94. PubMed ID: 15010306 [TBL] [Abstract][Full Text] [Related]
16. Molecular dynamics simulation and nuclear magnetic resonance studies of the terminal glucotriose unit found in the oligosaccharide of glycoprotein precursors. Höög C; Widmalm G Arch Biochem Biophys; 2000 May; 377(1):163-70. PubMed ID: 10775456 [TBL] [Abstract][Full Text] [Related]
17. Insights into the dynamics and molecular recognition features of glycopeptides by protein receptors: the 3D solution structure of hevein bound to the trisaccharide core of N-glycoproteins. Hernández-Gay JJ; Ardá A; Eller S; Mezzato S; Leeflang BR; Unverzagt C; Cañada FJ; Jiménez-Barbero J Chemistry; 2010 Sep; 16(35):10715-26. PubMed ID: 20652910 [TBL] [Abstract][Full Text] [Related]
18. Application of NMR, molecular simulation, and hydrodynamics to conformational analysis of trisaccharides. Dixon AM; Venable R; Widmalm G; Bull TE; Pastor RW Biopolymers; 2003 Aug; 69(4):448-60. PubMed ID: 12879491 [TBL] [Abstract][Full Text] [Related]