These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 19123361)
1. [Changes of microbial biomass carbon and enzyme activities in rice-barnyard grass coexisted soils]. Li HB; Kong CH Ying Yong Sheng Tai Xue Bao; 2008 Oct; 19(10):2234-8. PubMed ID: 19123361 [TBL] [Abstract][Full Text] [Related]
2. [Effects of allelopathic rice on rhizosphere microbial flora and enzyme activity]. Hu K; Luo Q; Wang S; Lin X; Lin W Ying Yong Sheng Tai Xue Bao; 2006 Jun; 17(6):1060-4. PubMed ID: 16964941 [TBL] [Abstract][Full Text] [Related]
3. Barnyard grass-induced rice allelopathy and momilactone B. Kato-Noguchi H J Plant Physiol; 2011 Jul; 168(10):1016-20. PubMed ID: 21392842 [TBL] [Abstract][Full Text] [Related]
4. [Inhibitory effects of allelopathic rice materials on Echinochloa crus-galli and related field weeds]. Xu Z; He Y; Zhu C; Yu G Ying Yong Sheng Tai Xue Bao; 2005 Apr; 16(4):726-31. PubMed ID: 16011176 [TBL] [Abstract][Full Text] [Related]
5. Isolation and identification of an allelopathic phenylethylamine in rice. Le Thi H; Lin CH; Smeda RJ; Leigh ND; Wycoff WG; Fritschi FB Phytochemistry; 2014 Dec; 108():109-21. PubMed ID: 25212867 [TBL] [Abstract][Full Text] [Related]
6. Reproduction allocation and potential mechanism of individual allelopathic rice plants in the presence of competing barnyardgrass. Kong CH; Wang ML; Wang P; Ni HW; Meng XR Pest Manag Sci; 2013 Jan; 69(1):142-8. PubMed ID: 22888051 [TBL] [Abstract][Full Text] [Related]
7. Transcriptome analysis reveals that barnyard grass exudates increase the allelopathic potential of allelopathic and non-allelopathic rice (Oryza sativa) accessions. Zhang Q; Zheng XY; Lin SX; Gu CZ; Li L; Li JY; Fang CX; He HB Rice (N Y); 2019 May; 12(1):30. PubMed ID: 31062105 [TBL] [Abstract][Full Text] [Related]
8. Microbial carbon source utilization in rice rhizosphere and non-rhizosphere soils in a 34-year fertilized paddy field. Tang H; Li C; Wen L; Li W; Shi L; Cheng K; Xiao X J Basic Microbiol; 2020 Nov; 60(11-12):1004-1013. PubMed ID: 33135159 [TBL] [Abstract][Full Text] [Related]
9. [Regulation effects of arbuscular mycorrhizal fungi on the interactions between barnyard grass and upland rice under enhanced nitrogen supply]. Zhu SC; Zhang SS; Tang JJ; Jiang QQ; Chen X Ying Yong Sheng Tai Xue Bao; 2007 Oct; 18(10):2337-42. PubMed ID: 18163320 [TBL] [Abstract][Full Text] [Related]
10. Competitive and Allelopathic Effects of Wild Rice Accessions (Oryza longistaminata) at Different Growth Stages. Shen S; Xu G; Clements DR; Jin G; Zhang F; Tao D; Xu P Pak J Biol Sci; 2016; 19(2):82-88. PubMed ID: 29023044 [TBL] [Abstract][Full Text] [Related]
11. Physiological Basis for the Mechanism of Selectivity of Tripyrasulfone between Rice ( Sun H; Yu S; Huang T; Lian L; Jin T; Peng X; Hao G; Wang J; Liu W; Wang H J Agric Food Chem; 2024 Jun; 72(25):14402-14410. PubMed ID: 38875520 [TBL] [Abstract][Full Text] [Related]
12. Barnyard grass stress up regulates the biosynthesis of phenolic compounds in allelopathic rice. He H; Wang H; Fang C; Wu H; Guo X; Liu C; Lin Z; Lin W J Plant Physiol; 2012 Nov; 169(17):1747-53. PubMed ID: 22939271 [TBL] [Abstract][Full Text] [Related]
13. Barnyard Grass Stress Triggers Changes in Root Traits and Phytohormone Levels in Allelopathic and Non-Allelopathic Rice. Yan Q; Tong J; Li S; Peng Q Biology (Basel); 2023 Aug; 12(8):. PubMed ID: 37626960 [TBL] [Abstract][Full Text] [Related]
14. Fate and impact on microorganisms of rice allelochemicals in paddy soil. Kong CH; Wang P; Gu Y; Xu XH; Wang ML J Agric Food Chem; 2008 Jul; 56(13):5043-9. PubMed ID: 18540621 [TBL] [Abstract][Full Text] [Related]
15. Effects of lead contamination on soil enzymatic activities, microbial biomass, and rice physiological indices in soil-lead-rice (Oryza sativa L.) system. Zeng LS; Liao M; Chen CL; Huang CY Ecotoxicol Environ Saf; 2007 May; 67(1):67-74. PubMed ID: 16806470 [TBL] [Abstract][Full Text] [Related]
16. [Responses of Extracellular Enzymes to Nitrogen Application in Rice of Various Ages with Rhizosphere and Bulk Soil]. Wei L; Tang ZZ; Zhu ZK; Cai G; Ge TD; Wang JR; Wu JS Huan Jing Ke Xue; 2017 Aug; 38(8):3489-3496. PubMed ID: 29964961 [TBL] [Abstract][Full Text] [Related]
17. Comparison of arsenic uptake ability of barnyard grass and rice species for arsenic phytoremediation. Sultana R; Kobayashi K; Kim KH Environ Monit Assess; 2015 Jan; 187(1):4101. PubMed ID: 25389022 [TBL] [Abstract][Full Text] [Related]
18. Study of the potential of barnyard grass for the remediation of Cd- and Pb-contaminated soil. Xu J; Cai Q; Wang H; Liu X; Lv J; Yao D; Lu Y; Li W; Liu Y Environ Monit Assess; 2017 May; 189(5):224. PubMed ID: 28432507 [TBL] [Abstract][Full Text] [Related]
19. Tree species composition influences enzyme activities and microbial biomass in the rhizosphere: a rhizobox approach. Fang S; Liu D; Tian Y; Deng S; Shang X PLoS One; 2013; 8(4):e61461. PubMed ID: 23637838 [TBL] [Abstract][Full Text] [Related]
20. Interactions between selected PAHs and the microbial community in rhizosphere of a paddy soil. Su YH; Yang XY Sci Total Environ; 2009 Jan; 407(3):1027-34. PubMed ID: 19000632 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]