These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 19123648)

  • 81. Optimization of axial resolution in a confocal microscope with D-shaped apertures.
    Gong W; Si K; Sheppard CJ
    Appl Opt; 2009 Jul; 48(20):3998-4002. PubMed ID: 19593353
    [TBL] [Abstract][Full Text] [Related]  

  • 82. A preliminary study of spatial resolution enhancement of confocal and triangulation displacement meters using contact mode scanning probes.
    Gaitas A
    Rev Sci Instrum; 2008 Feb; 79(2 Pt 1):023703. PubMed ID: 18315301
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Two-photon imaging of multiple fluorescent proteins by phase-shaping and linear unmixing with a single broadband laser.
    Brenner MH; Cai D; Swanson JA; Ogilvie JP
    Opt Express; 2013 Jul; 21(14):17256-64. PubMed ID: 23938572
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Fourier transform measurement of two-photon excitation spectra: applications to microscopy and optimal control.
    Ogilvie JP; Kubarych KJ; Alexandrou A; Joffre M
    Opt Lett; 2005 Apr; 30(8):911-3. PubMed ID: 15865396
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Two-color two-photon 4Pi fluorescence microscopy.
    Chen J; Midorikawa K
    Opt Lett; 2004 Jun; 29(12):1354-6. PubMed ID: 15233433
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Surface plasmon-enhanced two-photon fluorescence microscopy for live cell membrane imaging.
    He RY; Su YD; Cho KC; Lin CY; Chang NS; Chang CH; Chen SJ
    Opt Express; 2009 Apr; 17(8):5987-97. PubMed ID: 19365417
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Correcting spherical aberrations in a biospecimen using a transmissive liquid crystal device in two-photon excitation laser scanning microscopy.
    Tanabe A; Hibi T; Ipponjima S; Matsumoto K; Yokoyama M; Kurihara M; Hashimoto N; Nemoto T
    J Biomed Opt; 2015 Oct; 20(10):101204. PubMed ID: 26244766
    [TBL] [Abstract][Full Text] [Related]  

  • 88. A series of flexible design adaptations to the Nikon E-C1 and E-C2 confocal microscope systems for UV, multiphoton and FLIM imaging.
    Botchway SW; Scherer KM; Hook S; Stubbs CD; Weston E; Bisby RH; Parker AW
    J Microsc; 2015 Apr; 258(1):68-78. PubMed ID: 25664385
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Automated extended volume imaging of tissue using confocal and optical microscopy.
    Sands GB; Gerneke DA; Smaill BH; Le Grice IJ
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():133-6. PubMed ID: 17946383
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Polarization ellipticity compensation in polarization second-harmonic generation microscopy without specimen rotation.
    Chou CK; Chen WL; Fwu PT; Lin SJ; Lee HS; Dong CY
    J Biomed Opt; 2008; 13(1):014005. PubMed ID: 18315363
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Hyperspectral confocal microscope.
    Sinclair MB; Haaland DM; Timlin JA; Jones HD
    Appl Opt; 2006 Aug; 45(24):6283-91. PubMed ID: 16892134
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Polarization-resolved two-photon luminescence microscopy of V-groove arrays.
    Beermann J; Novikov SM; Holmgaard T; Eriksen RL; Albrektsen O; Pedersen K; Bozhevolnyi SI
    Opt Express; 2012 Jan; 20(1):654-62. PubMed ID: 22274389
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Correcting distorted optics: back to the basics.
    Heintzmann R
    Nat Methods; 2010 Feb; 7(2):108-10. PubMed ID: 20111036
    [No Abstract]   [Full Text] [Related]  

  • 94. Enhanced background rejection in thick tissue with differential-aberration two-photon microscopy.
    Leray A; Lillis K; Mertz J
    Biophys J; 2008 Feb; 94(4):1449-58. PubMed ID: 17951295
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Fluorescence lifetime imaging for the two-photon microscope: time-domain and frequency-domain methods.
    Gratton E; Breusegem S; Sutin J; Ruan Q; Barry N
    J Biomed Opt; 2003 Jul; 8(3):381-90. PubMed ID: 12880343
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Guiding a confocal microscope by single fluorescent nanoparticles.
    Cang H; Xu CS; Montiel D; Yang H
    Opt Lett; 2007 Sep; 32(18):2729-31. PubMed ID: 17873950
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Visible-wavelength two-photon excitation microscopy for fluorescent protein imaging.
    Yamanaka M; Saito K; Smith NI; Arai Y; Uegaki K; Yonemaru Y; Mochizuki K; Kawata S; Nagai T; Fujita K
    J Biomed Opt; 2015 Oct; 20(10):101202. PubMed ID: 26238663
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Extended depth of field microscopy for rapid volumetric two-photon imaging.
    Thériault G; De Koninck Y; McCarthy N
    Opt Express; 2013 Apr; 21(8):10095-104. PubMed ID: 23609714
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Spectral- and frequency-encoded fluorescence imaging.
    Motz JT; Yelin D; Vakoc BJ; Bouma BE; Tearney GJ
    Opt Lett; 2005 Oct; 30(20):2760-2. PubMed ID: 16252766
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Improved axial point spread function in a two-frequency laser scanning confocal fluorescence microscope.
    Wu JS; Chung YC; Chien JJ; Chou C
    J Biomed Opt; 2018 Jan; 23(1):1-4. PubMed ID: 29341543
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.