These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 1912387)
1. Elevated levels of stress proteins associated with bacterial symbiosis in Amoeba proteus and soybean root nodule cells. Choi EY; Ahn GS; Jeon KW Biosystems; 1991; 25(3):205-12. PubMed ID: 1912387 [TBL] [Abstract][Full Text] [Related]
2. A novel strong promoter of the groEx operon of symbiotic bacteria in Amoeba proteus. Ahn TI; Lim ST; Leeu HK; Lee JE; Jeon KW Gene; 1994 Oct; 148(1):43-9. PubMed ID: 7926836 [TBL] [Abstract][Full Text] [Related]
3. Structure and expression of the dnaKJ operon of Buchnera, an intracellular symbiotic bacteria of aphid. Sato S; Ishikawa H J Biochem; 1997 Jul; 122(1):41-8. PubMed ID: 9276669 [TBL] [Abstract][Full Text] [Related]
4. Mutualism based on stress: selective synthesis and phosphorylation of a stress protein by an intracellular symbiont. Morioka M; Ishikawa H J Biochem; 1992 Apr; 111(4):431-5. PubMed ID: 1618730 [TBL] [Abstract][Full Text] [Related]
5. Purification and characterization of the GroESLx chaperonins from the symbiotic X-bacteria in Amoeba proteus. Jung GH; Ahn TI Protein Expr Purif; 2001 Dec; 23(3):459-67. PubMed ID: 11722184 [TBL] [Abstract][Full Text] [Related]
6. A symbiont-produced protein and bacterial symbiosis in Amoeba proteus. Pak JW; Jeon KW J Eukaryot Microbiol; 1997; 44(6):614-9. PubMed ID: 9435132 [TBL] [Abstract][Full Text] [Related]
7. Phosphatidylcholine levels in Bradyrhizobium japonicum membranes are critical for an efficient symbiosis with the soybean host plant. Minder AC; de Rudder KE; Narberhaus F; Fischer HM; Hennecke H; Geiger O Mol Microbiol; 2001 Mar; 39(5):1186-98. PubMed ID: 11251836 [TBL] [Abstract][Full Text] [Related]
8. Three disparately regulated genes for sigma 32-like transcription factors in Bradyrhizobium japonicum. Narberhaus F; Krummenacher P; Fischer HM; Hennecke H Mol Microbiol; 1997 Apr; 24(1):93-104. PubMed ID: 9140968 [TBL] [Abstract][Full Text] [Related]
9. Endothelial cytotoxicity mediated by serum antibodies to heat shock proteins of Escherichia coli and Chlamydia pneumoniae: immune reactions to heat shock proteins as a possible link between infection and atherosclerosis. Mayr M; Metzler B; Kiechl S; Willeit J; Schett G; Xu Q; Wick G Circulation; 1999 Mar; 99(12):1560-6. PubMed ID: 10096931 [TBL] [Abstract][Full Text] [Related]
10. The PhyR-sigma(EcfG) signalling cascade is involved in stress response and symbiotic efficiency in Bradyrhizobium japonicum. Gourion B; Sulser S; Frunzke J; Francez-Charlot A; Stiefel P; Pessi G; Vorholt JA; Fischer HM Mol Microbiol; 2009 Jul; 73(2):291-305. PubMed ID: 19555458 [TBL] [Abstract][Full Text] [Related]
11. An integrated proteomics and transcriptomics reference data set provides new insights into the Bradyrhizobium japonicum bacteroid metabolism in soybean root nodules. Delmotte N; Ahrens CH; Knief C; Qeli E; Koch M; Fischer HM; Vorholt JA; Hennecke H; Pessi G Proteomics; 2010 Apr; 10(7):1391-400. PubMed ID: 20104621 [TBL] [Abstract][Full Text] [Related]
12. Bradyrhizobium japonicum delta-aminolevulinic acid dehydratase is essential for symbiosis with soybean and contains a novel metal-binding domain. Chauhan S; O'Brian MR J Bacteriol; 1993 Nov; 175(22):7222-7. PubMed ID: 8226669 [TBL] [Abstract][Full Text] [Related]
13. The s29x gene of symbiotic bacteria in Amoeba proteus with a novel promoter. Pak JW; Jeon KW Gene; 1996 May; 171(1):89-93. PubMed ID: 8675037 [TBL] [Abstract][Full Text] [Related]
14. Rhizobial adaptation to hosts, a new facet in the legume root-nodule symbiosis. Koch M; Delmotte N; Rehrauer H; Vorholt JA; Pessi G; Hennecke H Mol Plant Microbe Interact; 2010 Jun; 23(6):784-90. PubMed ID: 20459317 [TBL] [Abstract][Full Text] [Related]
15. A dual-targeted soybean protein is involved in Bradyrhizobium japonicum infection of soybean root hair and cortical cells. Libault M; Govindarajulu M; Berg RH; Ong YT; Puricelli K; Taylor CG; Xu D; Stacey G Mol Plant Microbe Interact; 2011 Sep; 24(9):1051-60. PubMed ID: 21815830 [TBL] [Abstract][Full Text] [Related]
16. Streptomyces lividans possesses a GroEL-like chaperonin. Marco S; Parro V; Carrascosa JL; Mellado RP FEMS Microbiol Lett; 1992 Jun; 72(2):127-32. PubMed ID: 1354626 [TBL] [Abstract][Full Text] [Related]
17. Bradyrhizobium diazoefficiens USDA 110- Glycine max Interactome Provides Candidate Proteins Associated with Symbiosis. Zhang L; Liu JY; Gu H; Du Y; Zuo JF; Zhang Z; Zhang M; Li P; Dunwell JM; Cao Y; Zhang Z; Zhang YM J Proteome Res; 2018 Sep; 17(9):3061-3074. PubMed ID: 30091610 [TBL] [Abstract][Full Text] [Related]
18. Molecular chaperon produced by an intracellular symbiont. Kakeda K; Ishikawa H J Biochem; 1991 Oct; 110(4):583-7. PubMed ID: 1685735 [TBL] [Abstract][Full Text] [Related]
19. The dnaKJ operon belongs to the sigma32-dependent class of heat shock genes in Bradyrhizobium japonicum. Minder AC; Narberhaus F; Babst M; Hennecke H; Fischer HM Mol Gen Genet; 1997 Mar; 254(2):195-206. PubMed ID: 9108282 [TBL] [Abstract][Full Text] [Related]
20. Hsp70 proteins, similar to Escherichia coli DnaK, in chloroplasts and mitochondria of Euglena gracilis. Amir-Shapira D; Leustek T; Dalie B; Weissbach H; Brot N Proc Natl Acad Sci U S A; 1990 Mar; 87(5):1749-52. PubMed ID: 2106681 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]