BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 19123937)

  • 1. Comparative analysis of processed ribosomal protein pseudogenes in four mammalian genomes.
    Balasubramanian S; Zheng D; Liu YJ; Fang G; Frankish A; Carriero N; Robilotto R; Cayting P; Gerstein M
    Genome Biol; 2009; 10(1):R2. PubMed ID: 19123937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing the genomic evidence for conserved transcribed pseudogenes under selection.
    Khachane AN; Harrison PM
    BMC Genomics; 2009 Sep; 10():435. PubMed ID: 19754956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive analysis of the pseudogenes of glycolytic enzymes in vertebrates: the anomalously high number of GAPDH pseudogenes highlights a recent burst of retrotrans-positional activity.
    Liu YJ; Zheng D; Balasubramanian S; Carriero N; Khurana E; Robilotto R; Gerstein MB
    BMC Genomics; 2009 Oct; 10():480. PubMed ID: 19835609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide survey for biologically functional pseudogenes.
    Svensson O; Arvestad L; Lagergren J
    PLoS Comput Biol; 2006 May; 2(5):e46. PubMed ID: 16680195
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of the NANOG pseudogene family in the human and chimpanzee genomes.
    Fairbanks DJ; Maughan PJ
    BMC Evol Biol; 2006 Feb; 6():12. PubMed ID: 16469101
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcribed processed pseudogenes in the human genome: an intermediate form of expressed retrosequence lacking protein-coding ability.
    Harrison PM; Zheng D; Zhang Z; Carriero N; Gerstein M
    Nucleic Acids Res; 2005; 33(8):2374-83. PubMed ID: 15860774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and characterization of over 100 mitochondrial ribosomal protein pseudogenes in the human genome.
    Zhang Z; Gerstein M
    Genomics; 2003 May; 81(5):468-80. PubMed ID: 12706105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated pseudogene annotation for human chromosome 22: evidence for transcription.
    Zheng D; Zhang Z; Harrison PM; Karro J; Carriero N; Gerstein M
    J Mol Biol; 2005 May; 349(1):27-45. PubMed ID: 15876366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and analysis of over 2000 ribosomal protein pseudogenes in the human genome.
    Zhang Z; Harrison P; Gerstein M
    Genome Res; 2002 Oct; 12(10):1466-82. PubMed ID: 12368239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utility of syntenic relationships of VDAC1 pseudogenes for not only an understanding of the phylogenetic divergence history of rodents, but also ascertaining possible pseudogene candidates as genuine pseudogenes.
    Ido Y; Yoshitomi T; Ohkura K; Yamamoto T; Shinohara Y
    Genomics; 2014 Aug; 104(2):128-33. PubMed ID: 24858958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detecting transcription of ribosomal protein pseudogenes in diverse human tissues from RNA-seq data.
    Tonner P; Srinivasasainagendra V; Zhang S; Zhi D
    BMC Genomics; 2012 Aug; 13():412. PubMed ID: 22908858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the role of retrotransposition in gene evolution in vertebrates.
    Yu Z; Morais D; Ivanga M; Harrison PM
    BMC Bioinformatics; 2007 Aug; 8():308. PubMed ID: 17718914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequent emergence and functional resurrection of processed pseudogenes in the human and mouse genomes.
    Sakai H; Koyanagi KO; Imanishi T; Itoh T; Gojobori T
    Gene; 2007 Mar; 389(2):196-203. PubMed ID: 17196768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frequency of intron loss correlates with processed pseudogene abundance: a novel strategy to test the reverse transcriptase model of intron loss.
    Zhu T; Niu DK
    BMC Biol; 2013 Mar; 11():23. PubMed ID: 23497167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. L1 elements, processed pseudogenes and retrogenes in mammalian genomes.
    Ding W; Lin L; Chen B; Dai J
    IUBMB Life; 2006 Dec; 58(12):677-85. PubMed ID: 17424906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic organization of eukaryotic tRNAs.
    Bermudez-Santana C; Attolini CS; Kirsten T; Engelhardt J; Prohaska SJ; Steigele S; Stadler PF
    BMC Genomics; 2010 Apr; 11():270. PubMed ID: 20426822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HOPPSIGEN: a database of human and mouse processed pseudogenes.
    Khelifi A; Duret L; Mouchiroud D
    Nucleic Acids Res; 2005 Jan; 33(Database issue):D59-66. PubMed ID: 15608268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative analysis of pseudogenes across three phyla.
    Sisu C; Pei B; Leng J; Frankish A; Zhang Y; Balasubramanian S; Harte R; Wang D; Rutenberg-Schoenberg M; Clark W; Diekhans M; Rozowsky J; Hubbard T; Harrow J; Gerstein MB
    Proc Natl Acad Sci U S A; 2014 Sep; 111(37):13361-6. PubMed ID: 25157146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mammalian genome contains a high proportion of processed pseudogenes corresponding to ribosomal protein L19.
    Shiran A; Flusser G; Aloni R; Meyuhas O
    Biochem Int; 1990 Dec; 22(5):921-8. PubMed ID: 2099152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Divergent V1R repertoires in five species: Amplification in rodents, decimation in primates, and a surprisingly small repertoire in dogs.
    Young JM; Kambere M; Trask BJ; Lane RP
    Genome Res; 2005 Feb; 15(2):231-40. PubMed ID: 15653832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.