BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 19124076)

  • 1. Injectability of biodegradable in situ forming microparticle systems (ISM).
    Rungseevijitprapa W; Bodmeier R
    Eur J Pharm Sci; 2009 Mar; 36(4-5):524-31. PubMed ID: 19124076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure formation and characterization of injectable drug loaded biodegradable devices: in situ implants versus in situ microparticles.
    Kranz H; Bodmeier R
    Eur J Pharm Sci; 2008 Jul; 34(2-3):164-72. PubMed ID: 18501569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myotoxicity studies of O/W-in situ forming microparticle systems.
    Rungseevijitprapa W; Brazeau GA; Simkins JW; Bodmeier R
    Eur J Pharm Biopharm; 2008 May; 69(1):126-33. PubMed ID: 18036794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation the injectability of injectable microparticle delivery systems on the basis of injection force and discharged rate.
    Zhao C; Zhu Z; Cao X; Pan F; Li F; Xue M; Guo Y; Zhao Y; Zeng J; Liu Y; Yang Z; Liu Y; Ren F; Feng L
    Eur J Pharm Biopharm; 2023 Sep; 190():58-72. PubMed ID: 37437667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved physical stability and injectability of non-aqueous in situ PLGA microparticle forming emulsions.
    Voigt M; Koerber M; Bodmeier R
    Int J Pharm; 2012 Sep; 434(1-2):251-6. PubMed ID: 22677417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rheological characterization and injection forces of concentrated protein formulations: an alternative predictive model for non-Newtonian solutions.
    Allmendinger A; Fischer S; Huwyler J; Mahler HC; Schwarb E; Zarraga IE; Mueller R
    Eur J Pharm Biopharm; 2014 Jul; 87(2):318-28. PubMed ID: 24560966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Needle-free injection--science fiction or comeback of an almost forgotten drug delivery system?].
    Ziegler A
    Med Monatsschr Pharm; 2007 Aug; 30(8):297-303. PubMed ID: 17879809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and application of a micro-capillary rheometer for in-vitro evaluation of parenteral injectability.
    Allahham A; Mainwaring D; Stewart P; Marriott J
    J Pharm Pharmacol; 2004 Jun; 56(6):709-16. PubMed ID: 15231035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Delivery Considerations of Highly Viscous Polymeric Fluids Mimicking Concentrated Biopharmaceuticals: Assessment of Injectability via Measurement of Total Work Done "W
    Zhang Q; Fassihi MA; Fassihi R
    AAPS PharmSciTech; 2018 May; 19(4):1520-1528. PubMed ID: 29464592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ forming parenteral drug delivery systems: an overview.
    Packhaeuser CB; Schnieders J; Oster CG; Kissel T
    Eur J Pharm Biopharm; 2004 Sep; 58(2):445-55. PubMed ID: 15296966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Injectability evaluation: an open issue.
    Cilurzo F; Selmin F; Minghetti P; Adami M; Bertoni E; Lauria S; Montanari L
    AAPS PharmSciTech; 2011 Jun; 12(2):604-9. PubMed ID: 21553165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Quantification of Injectability by Mechanical Testing.
    Robinson TE; Hughes EAB; Eisenstein NM; Grover LM; Cox SC
    J Vis Exp; 2020 May; (159):. PubMed ID: 32478751
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Injectability as a function of viscosity and dosing materials for subcutaneous administration.
    Watt RP; Khatri H; Dibble ARG
    Int J Pharm; 2019 Jan; 554():376-386. PubMed ID: 30414478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding syringeability and injectability of high molecular weight PEO solution through time-dependent force-distance profiles.
    Feng X; Wu KW; Balajee V; Leissa J; Ashraf M; Xu X
    Int J Pharm; 2023 Jan; 631():122486. PubMed ID: 36521635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prefilled Syringe Injection Force Impact Assessment from Back Pressure: An Approach for Testing Syringe Injectability In Situ vs. In Vitro.
    Megna C; Wells O; Bonanno D; Rasheed W; Cristofolli E
    PDA J Pharm Sci Technol; 2023; 77(5):340-349. PubMed ID: 37188533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling, design, and machine learning-based framework for optimal injectability of microparticle-based drug formulations.
    Sarmadi M; Behrens AM; McHugh KJ; Contreras HTM; Tochka ZL; Lu X; Langer R; Jaklenec A
    Sci Adv; 2020 Jul; 6(28):eabb6594. PubMed ID: 32923598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Method To Determine the Kinetics of Solute Mixing in Liquid/Liquid Formulation Dual-Chamber Syringes.
    Werk T; Mahler HC; Ludwig IS; Luemkemann J; Huwyler J; Hafner M
    PDA J Pharm Sci Technol; 2017 1/2; 71(1):2-10. PubMed ID: 27516487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flow and injection characteristics of pharmaceutical parenteral formulations using a micro-capillary rheometer.
    Allahham A; Stewart P; Marriott J; Mainwaring DE
    Int J Pharm; 2004 Feb; 270(1-2):139-48. PubMed ID: 14726130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ex vivo evaluation of side-perforated needles by injection of anesthetic solutions into the mandibular bone and the periodontal ligament of pigs.
    Pertot WJ; Rieu R; Fuseri J; Proust JP
    J Endod; 1992 Mar; 18(3):100-3. PubMed ID: 19186428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of syringe material and needle size on the minimum plunger-displacement pressure of arterial blood gas syringes.
    Ansel GM; Douce FH
    Respir Care; 1982 Feb; 27(2):147-51. PubMed ID: 10315159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.