These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
492 related articles for article (PubMed ID: 19124163)
1. Benefits of the maximum tolerated dose (MTD) and maximum tolerated concentration (MTC) concept in aquatic toxicology. Hutchinson TH; Bögi C; Winter MJ; Owens JW Aquat Toxicol; 2009 Feb; 91(3):197-202. PubMed ID: 19124163 [TBL] [Abstract][Full Text] [Related]
2. Multi-criteria decision analysis of test endpoints for detecting the effects of endocrine active substances in fish full life cycle tests. Crane M; Gross M; Matthiessen P; Ankley GT; Axford S; Bjerregaard P; Brown R; Chapman P; Dorgeloh M; Galay-Burgos M; Green J; Hazlerigg C; Janssen J; Lorenzen K; Parrott J; Rufli H; Schäfers C; Seki M; Stolzenberg HC; van der Hoeven N; Vethaak D; Winfield IJ; Zok S; Wheeler J Integr Environ Assess Manag; 2010 Jul; 6(3):378-89. PubMed ID: 20821701 [TBL] [Abstract][Full Text] [Related]
3. Methods for deriving pesticide aquatic life criteria. TenBrook PL; Tjeerdema RS; Hann P; Karkoski J Rev Environ Contam Toxicol; 2009; 199():19-109. PubMed ID: 19110939 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of rodent-only toxicology for early clinical trials with novel cancer therapeutics. Newell DR; Burtles SS; Fox BW; Jodrell DI; Connors TA Br J Cancer; 1999 Nov; 81(5):760-8. PubMed ID: 10555743 [TBL] [Abstract][Full Text] [Related]
5. Environmental effect assessment for sexual endocrine-disrupting chemicals: Fish testing strategy. Knacker T; Boettcher M; Frische T; Rufli H; Stolzenberg HC; Teigeler M; Zok S; Braunbeck T; Schäfers C Integr Environ Assess Manag; 2010 Oct; 6(4):653-62. PubMed ID: 20872646 [TBL] [Abstract][Full Text] [Related]
6. Zebrafish (Danio rerio) as a model organism for investigating endocrine disruption. Segner H Comp Biochem Physiol C Toxicol Pharmacol; 2009 Mar; 149(2):187-95. PubMed ID: 18955160 [TBL] [Abstract][Full Text] [Related]
7. Regulation of endocrine-disrupting chemicals: critical overview and deficiencies in toxicology and risk assessment for human health. Harvey PW; Everett DJ Best Pract Res Clin Endocrinol Metab; 2006 Mar; 20(1):145-65. PubMed ID: 16522525 [TBL] [Abstract][Full Text] [Related]
8. Endocrine disrupting chemicals in fish: developing exposure indicators and predictive models of effects based on mechanism of action. Ankley GT; Bencic DC; Breen MS; Collette TW; Conolly RB; Denslow ND; Edwards SW; Ekman DR; Garcia-Reyero N; Jensen KM; Lazorchak JM; Martinović D; Miller DH; Perkins EJ; Orlando EF; Villeneuve DL; Wang RL; Watanabe KH Aquat Toxicol; 2009 May; 92(3):168-78. PubMed ID: 19261338 [TBL] [Abstract][Full Text] [Related]
9. Biomarkers in aquatic plants: selection and utility. Brain RA; Cedergreen N Rev Environ Contam Toxicol; 2009; 198():49-109. PubMed ID: 19253039 [TBL] [Abstract][Full Text] [Related]
10. The enhancement of the subacute repeat dose toxicity test OECD TG 407 for the detection of endocrine active chemicals: comparison with toxicity tests of longer duration. Gelbke HP; Hofmann A; Owens JW; Freyberger A Arch Toxicol; 2007 Apr; 81(4):227-50. PubMed ID: 17047927 [TBL] [Abstract][Full Text] [Related]
11. Future of toxicology--low-dose toxicology and risk--benefit analysis. Rietjens IM; Alink GM Chem Res Toxicol; 2006 Aug; 19(8):977-81. PubMed ID: 16918235 [TBL] [Abstract][Full Text] [Related]
12. Risk assessment of endocrine active chemicals: identifying chemicals of regulatory concern. Bars R; Fegert I; Gross M; Lewis D; Weltje L; Weyers A; Wheeler JR; Galay-Burgos M Regul Toxicol Pharmacol; 2012 Oct; 64(1):143-54. PubMed ID: 22735369 [TBL] [Abstract][Full Text] [Related]
13. High dose selection in general toxicity studies for drug development: A pharmaceutical industry perspective. Buckley LA; Dorato MA Regul Toxicol Pharmacol; 2009 Aug; 54(3):301-7. PubMed ID: 19477212 [TBL] [Abstract][Full Text] [Related]
14. In silico toxicology for the pharmaceutical sciences. Valerio LG Toxicol Appl Pharmacol; 2009 Dec; 241(3):356-70. PubMed ID: 19716836 [TBL] [Abstract][Full Text] [Related]
15. Utilization of animal studies to determine the effects and human risks of environmental toxicants (drugs, chemicals, and physical agents). Brent RL Pediatrics; 2004 Apr; 113(4 Suppl):984-95. PubMed ID: 15060191 [TBL] [Abstract][Full Text] [Related]
16. Resolving mechanisms of toxicity while pursuing ecotoxicological relevance? Hinton DE; Kullman SW; Hardman RC; Volz DC; Chen PJ; Carney M; Bencic DC Mar Pollut Bull; 2005; 51(8-12):635-48. PubMed ID: 16154600 [TBL] [Abstract][Full Text] [Related]
17. An assessment of the developmental, reproductive, and neurotoxicity of endosulfan. Silva MH; Gammon D Birth Defects Res B Dev Reprod Toxicol; 2009 Feb; 86(1):1-28. PubMed ID: 19243027 [TBL] [Abstract][Full Text] [Related]
18. Are endocrine disruptors among the causes of the deterioration of aquatic biodiversity? Zhou J; Cai ZH; Zhu XS Integr Environ Assess Manag; 2010 Jul; 6(3):492-8. PubMed ID: 20821709 [TBL] [Abstract][Full Text] [Related]
19. Sex differences in effects on sexual development in rat offspring after pre- and postnatal exposure to triphenyltin chloride. Grote K; Hobler C; Andrade AJ; Grande SW; Gericke C; Talsness CE; Appel KE; Chahoud I Toxicology; 2009 Jun; 260(1-3):53-9. PubMed ID: 19464569 [TBL] [Abstract][Full Text] [Related]
20. Association between contaminant tissue residues and effects in aquatic organisms. Barron MG; Hansen JA; Lipton J Rev Environ Contam Toxicol; 2002; 173():1-37. PubMed ID: 11776748 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]